
Jinpeng Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8473645/publications.pdf Version: 2024-02-01

INDENC DU

#	Article	IF	CITATIONS
1	A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. Applied Catalysis B: Environmental, 2020, 264, 118511.	20.2	143
2	Selective catalytic reduction of NO <i>x</i> with NH3: opportunities and challenges of Cu-based small-pore zeolites. National Science Review, 2021, 8, nwab010.	9.5	137
3	Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized cu-zeolites for NH3-SCR reaction. Applied Catalysis B: Environmental, 2020, 266, 118655.	20.2	88
4	Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR. Applied Catalysis B: Environmental, 2020, 275, 119105.	20.2	71
5	Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO with NH3. Chemical Engineering Journal, 2020, 388, 124250.	12.7	49
6	Reaction Pathways of the Selective Catalytic Reduction of NO with NH ₃ on the α-Fe ₂ O ₃ (012) Surface: a Combined Experimental and DFT Study. Environmental Science & Technology, 2021, 55, 10967-10974.	10.0	48
7	Unexpected increase in low-temperature NH3-SCR catalytic activity over Cu-SSZ-39 after hydrothermal aging. Applied Catalysis B: Environmental, 2021, 294, 120237.	20.2	40
8	Effects of SO ₂ on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2020, 10, 1256-1263.	4.1	39
9	Investigation of Suitable Templates for One-Pot-Synthesized Cu-SAPO-34 in NO _{<i>x</i>} Abatement from Diesel Vehicle Exhaust. Environmental Science & Technology, 2020, 54, 7870-7878.	10.0	37
10	Cu-exchanged RTH-type zeolites for NH ₃ -selective catalytic reduction of NO _x : Cu distribution and hydrothermal stability. Catalysis Science and Technology, 2019, 9, 106-115.	4.1	35
11	Hydrothermal Stability Enhancement of Al-Rich Cu-SSZ-13 for NH ₃ Selective Catalytic Reduction Reaction by Ion Exchange with Cerium and Samarium. Industrial & Engineering Chemistry Research, 2020, 59, 6416-6423.	3.7	29
12	Promotion effect of cerium doping on iron–titanium composite oxide catalysts for selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2020, 10, 648-657.	4.1	26
13	Reaction Pathways of Standard and Fast Selective Catalytic Reduction over Cu-SSZ-39. Environmental Science & Technology, 2021, 55, 16175-16183.	10.0	24
14	SSZ-13 Synthesized by Solvent-Free Method: A Potential Candidate for NH ₃ -SCR Catalyst with High Activity and Hydrothermal Stability. Industrial & Engineering Chemistry Research, 2019, 58, 5397-5403.	3.7	23
15	The effect of crystallite size on low-temperature hydrothermal stability of Cu-SAPO-34. Catalysis Science and Technology, 2020, 10, 2855-2863.	4.1	16
16	Promoting Effect of Mn on In Situ Synthesized Cu-SSZ-13 for NH3-SCR. Catalysts, 2020, 10, 1375.	3.5	12