## Lisa M Butler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472984/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11700-11705. | 7.1  | 475       |
| 2  | Dual Roles of PARP-1 Promote Cancer Growth and Progression. Cancer Discovery, 2012, 2, 1134-1149.                                                                                                                                                      | 9.4  | 354       |
| 3  | Androgen Receptor Inhibits Estrogen Receptor-Î $\pm$ Activity and Is Prognostic in Breast Cancer. Cancer Research, 2009, 69, 6131-6140.                                                                                                                | 0.9  | 329       |
| 4  | Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Advanced<br>Drug Delivery Reviews, 2020, 159, 245-293.                                                                                                      | 13.7 | 316       |
| 5  | Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer.<br>Endocrine-Related Cancer, 2004, 11, 459-476.                                                                                                          | 3.1  | 212       |
| 6  | Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle, 2012, 11, 2756-2761.                                                                                                               | 2.6  | 201       |
| 7  | Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate<br>cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>631-640.                              | 7.1  | 198       |
| 8  | Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. International Journal of Cancer, 2012, 131, 652-661.                                                                                          | 5.1  | 169       |
| 9  | Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nature Reviews Cancer, 2021, 21, 753-766.                                                                                                                               | 28.4 | 167       |
| 10 | Maximizing the Therapeutic Potential of HSP90 Inhibitors. Molecular Cancer Research, 2015, 13, 1445-1451.                                                                                                                                              | 3.4  | 161       |
| 11 | Cancer-associated fibroblasts—heroes or villains?. British Journal of Cancer, 2019, 121, 293-302.                                                                                                                                                      | 6.4  | 155       |
| 12 | Clobal Levels of Specific Histone Modifications and an Epigenetic Gene Signature Predict Prostate<br>Cancer Progression and Development. Cancer Epidemiology Biomarkers and Prevention, 2010, 19,<br>2611-2622.                                        | 2.5  | 145       |
| 13 | Peptidomimetic targeting of critical androgen receptor–coregulator interactions in prostate cancer.<br>Nature Communications, 2013, 4, 1923.                                                                                                           | 12.8 | 125       |
| 14 | Minireview: The Contribution of Different Androgen Receptor Domains to Receptor Dimerization and Signaling. Molecular Endocrinology, 2008, 22, 2373-2382.                                                                                              | 3.7  | 121       |
| 15 | Circulating microRNAs predict biochemical recurrence in prostate cancer patients. British Journal of Cancer, 2013, 109, 641-650.                                                                                                                       | 6.4  | 117       |
| 16 | Ex vivo culture of human prostate tissue and drug development. Nature Reviews Urology, 2013, 10,<br>483-487.                                                                                                                                           | 3.8  | 111       |
| 17 | The diversity and breadth of cancer cell fatty acid metabolism. Cancer & Metabolism, 2021, 9, 2.                                                                                                                                                       | 5.0  | 107       |
| 18 | Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. ELife, 2020, 9, .                                                                                                 | 6.0  | 104       |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts<br>synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation.<br>Molecular Cancer Therapeutics, 2007, 6, 51-60. | 4.1 | 103       |
| 20 | Targeting cell cycle and hormone receptor pathways in cancer. Oncogene, 2013, 32, 5481-5491.                                                                                                                                                          | 5.9 | 98        |
| 21 | Androgen control of lipid metabolism in prostate cancer: novel insights and future applications.<br>Endocrine-Related Cancer, 2016, 23, R219-R227.                                                                                                    | 3.1 | 95        |
| 22 | MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Research, 2017, 77, 1021-1034.                                                                                                                                           | 0.9 | 94        |
| 23 | A patientâ€derived explant ( <scp>PDE</scp> ) model of hormoneâ€dependent cancer. Molecular Oncology,<br>2018, 12, 1608-1622.                                                                                                                         | 4.6 | 94        |
| 24 | Evidence for Efficacy of New Hsp90 Inhibitors Revealed by <i>Ex Vivo</i> Culture of Human Prostate<br>Tumors. Clinical Cancer Research, 2012, 18, 3562-3570.                                                                                          | 7.0 | 92        |
| 25 | A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene, 2017, 36, 24-34.                                                                                                                                            | 5.9 | 85        |
| 26 | Control of Androgen Receptor Signaling in Prostate Cancer by the Cochaperone Small<br>Glutamine–Rich Tetratricopeptide Repeat Containing Protein α. Cancer Research, 2007, 67, 10087-10096.                                                           | 0.9 | 82        |
| 27 | Disruption of androgen receptor signaling by synthetic progestins may increase risk of developing breast cancer. FASEB Journal, 2007, 21, 2285-2293.                                                                                                  | 0.5 | 76        |
| 28 | The Balance of Stromal BMP Signaling Mediated by GREM1 and ISLR Drives Colorectal Carcinogenesis.<br>Gastroenterology, 2021, 160, 1224-1239.e30.                                                                                                      | 1.3 | 76        |
| 29 | The histone deacetylase inhibitor, suberoylanilide hydroxamic acid, overcomes resistance of human breast cancer cells to Apo2L/TRAIL. International Journal of Cancer, 2006, 119, 944-954.                                                            | 5.1 | 68        |
| 30 | Antiproliferative actions of the synthetic androgen, mibolerone, in breast cancer cells are mediated<br>by both androgen and progesterone receptors. Journal of Steroid Biochemistry and Molecular<br>Biology, 2008, 110, 236-243.                    | 2.5 | 65        |
| 31 | Extracellular Fatty Acids Are the Major Contributor to Lipid Synthesis in Prostate Cancer. Molecular<br>Cancer Research, 2019, 17, 949-962.                                                                                                           | 3.4 | 65        |
| 32 | The Magnitude of Androgen Receptor Positivity in Breast Cancer Is Critical for Reliable Prediction of Disease Outcome. Clinical Cancer Research, 2018, 24, 2328-2341.                                                                                 | 7.0 | 63        |
| 33 | The Origin and Contribution of Cancer-Associated Fibroblasts in Colorectal Carcinogenesis.<br>Gastroenterology, 2022, 162, 890-906.                                                                                                                   | 1.3 | 63        |
| 34 | Periâ€prostatic adipose tissue: the metabolic microenvironment of prostate cancer. BJU International,<br>2018, 121, 9-21.                                                                                                                             | 2.5 | 60        |
| 35 | Decreased Androgen Receptor Levels and Receptor Function in Breast Cancer Contribute to the<br>Failure of Response to Medroxyprogesterone Acetate. Cancer Research, 2005, 65, 8487-8496.                                                              | 0.9 | 58        |
| 36 | Prostate cancer cellâ€intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Reports, 2020, 21, e50162.                                                                                                             | 4.5 | 58        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Histone deacetylase inhibitors and retinoic acids inhibit growth of human neuroblastoma in vitro.<br>Medical and Pediatric Oncology, 2000, 35, 577-581.                                                | 1.0 | 57        |
| 38 | Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors. Oncotarget, 2013, 4, 691-704.                         | 1.8 | 57        |
| 39 | An androgen receptor mutation in the MDA-MB-453 cell line model of molecular apocrine breast cancer compromises receptor activity. Endocrine-Related Cancer, 2012, 19, 599-613.                        | 3.1 | 51        |
| 40 | GSTP1 DNA Methylation and Expression Status Is Indicative of 5-aza-2′-Deoxycytidine Efficacy in Human<br>Prostate Cancer Cells. PLoS ONE, 2011, 6, e25634.                                             | 2.5 | 49        |
| 41 | Effect of FAK inhibitor VSâ€6063 (defactinib) on docetaxel efficacy in prostate cancer. Prostate, 2018, 78,<br>308-317.                                                                                | 2.3 | 48        |
| 42 | ELOVL5 Is a Critical and Targetable Fatty Acid Elongase in Prostate Cancer. Cancer Research, 2021, 81, 1704-1718.                                                                                      | 0.9 | 44        |
| 43 | Lipidomic Profiling of Clinical Prostate Cancer Reveals Targetable Alterations in Membrane Lipid<br>Composition. Cancer Research, 2021, 81, 4981-4993.                                                 | 0.9 | 43        |
| 44 | Down-regulation of Fas gene expression in colon cancer is not a result of allelic loss or gene<br>rearrangement. British Journal of Cancer, 1998, 77, 1454-1459.                                       | 6.4 | 42        |
| 45 | Multiple nuclear receptor signaling pathways mediate the actions of synthetic progestins in target cells. Molecular and Cellular Endocrinology, 2012, 357, 60-70.                                      | 3.2 | 42        |
| 46 | Circulating microRNAs: macro-utility as markers of prostate cancer?. Endocrine-Related Cancer, 2012, 19, R99-R113.                                                                                     | 3.1 | 40        |
| 47 | DEREGULATION OF APOPTOSIS IN COLORECTAL CARCINOMA: THEORETICAL AND THERAPEUTIC IMPLICATIONS. Australian and New Zealand Journal of Surgery, 1999, 69, 88-94.                                           | 0.2 | 37        |
| 48 | Altered Endosome Biogenesis in Prostate Cancer Has Biomarker Potential. Molecular Cancer Research,<br>2014, 12, 1851-1862.                                                                             | 3.4 | 37        |
| 49 | Patient-derived Models Reveal Impact of the Tumor Microenvironment on Therapeutic Response.<br>European Urology Oncology, 2018, 1, 325-337.                                                            | 5.4 | 37        |
| 50 | Endosomal gene expression: a new indicator for prostate cancer patient prognosis?. Oncotarget, 2015,<br>6, 37919-37929.                                                                                | 1.8 | 36        |
| 51 | Molecular pathology and prostate cancer therapeutics: from biology to bedside. Journal of<br>Pathology, 2014, 232, 178-184.                                                                            | 4.5 | 34        |
| 52 | Human seminal fluid as a source of prostate cancer-specific microRNA biomarkers. Endocrine-Related<br>Cancer, 2014, 21, L17-L21.                                                                       | 3.1 | 34        |
| 53 | A gene signature identified using a mouse model of androgen receptorâ€dependent prostate cancer<br>predicts biochemical relapse in human disease. International Journal of Cancer, 2012, 131, 662-672. | 5.1 | 33        |
| 54 | Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine<br>Transdifferentiation in Prostate Cancer. Cell Reports, 2021, 34, 108585.                                               | 6.4 | 33        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hsp90: Still a viable target in prostate cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2013,<br>1835, 211-218.                                                                                           | 7.4 | 32        |
| 56 | Dysregulated fibronectin trafficking by Hsp90 inhibition restricts prostate cancer cell invasion.<br>Scientific Reports, 2018, 8, 2090.                                                                              | 3.3 | 31        |
| 57 | SGTA: A New Player in the Molecular Co-Chaperone Game. Hormones and Cancer, 2013, 4, 343-357.                                                                                                                        | 4.9 | 30        |
| 58 | Promoter region methylation does not account for the frequent loss of expression of the Fas gene in colorectal carcinoma. British Journal of Cancer, 2000, 82, 131-135.                                              | 6.4 | 29        |
| 59 | GRIP1 mediates the interaction between the amino- and carboxyl-termini of the androgen receptor.<br>Biological Chemistry, 2005, 386, 69-74.                                                                          | 2.5 | 29        |
| 60 | Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein. British Journal of<br>Cancer, 2018, 118, 713-726.                                                                                      | 6.4 | 28        |
| 61 | Lipogenic effects of androgen signaling in normal and malignant prostate. Asian Journal of Urology, 2020, 7, 258-270.                                                                                                | 1.2 | 27        |
| 62 | Ex vivo culture of intact human patient derived pancreatic tumour tissue. Scientific Reports, 2021, 11, 1944.                                                                                                        | 3.3 | 27        |
| 63 | The Combination of Metformin and Valproic Acid Induces Synergistic Apoptosis in the Presence of p53 and Androgen Signaling in Prostate Cancer. Molecular Cancer Therapeutics, 2017, 16, 2689-2700.                   | 4.1 | 26        |
| 64 | Identification of Novel Response and Predictive Biomarkers to Hsp90 Inhibitors Through Proteomic<br>Profiling of Patient-derived Prostate Tumor Explants. Molecular and Cellular Proteomics, 2018, 17,<br>1470-1486. | 3.8 | 26        |
| 65 | Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Applied Materials<br>& Interfaces, 2019, 11, 22993-23005.                                                                          | 8.0 | 26        |
| 66 | eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochemical Journal, 2020, 477, 4367-4381.                                                                                              | 3.7 | 25        |
| 67 | Bringing androgens up a NOTCH in breast cancer. Endocrine-Related Cancer, 2014, 21, T183-T202.                                                                                                                       | 3.1 | 24        |
| 68 | Co-targeting AR and HSP90 suppresses prostate cancer cell growth and prevents resistance mechanisms. Endocrine-Related Cancer, 2015, 22, 805-818.                                                                    | 3.1 | 24        |
| 69 | A Novel Class of Hsp90 C-Terminal Modulators Have Pre-Clinical Efficacy in Prostate Tumor Cells<br>Without Induction of a Heat Shock Response. Prostate, 2016, 76, 1546-1559.                                        | 2.3 | 23        |
| 70 | Overcoming enzalutamide resistance in metastatic prostate cancer by targeting sphingosine kinase.<br>EBioMedicine, 2021, 72, 103625.                                                                                 | 6.1 | 23        |
| 71 | Drug-Induced Epigenomic Plasticity Reprograms Circadian Rhythm Regulation to Drive Prostate Cancer toward Androgen Independence. Cancer Discovery, 2022, 12, 2074-2097.                                              | 9.4 | 22        |
| 72 | Knockdown of the cochaperone SGTA results in the suppression of androgen and PI3K/Akt signaling<br>and inhibition of prostate cancer cell proliferation. International Journal of Cancer, 2013, 133,<br>2812-2823.   | 5.1 | 21        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Removal of optimal cutting temperature (O.C.T.) compound from embedded tissue for MALDI imaging of lipids. Analytical and Bioanalytical Chemistry, 2021, 413, 2695-2708.                                                                         | 3.7 | 21        |
| 74 | Remodeling of the Lymphatic Vasculature during Mouse Mammary Gland Morphogenesis Is Mediated<br>via Epithelial-Derived Lymphangiogenic Stimuli. American Journal of Pathology, 2012, 181, 2225-2238.                                             | 3.8 | 20        |
| 75 | Subdomain structure of the co-chaperone SGTA and activity of its androgen receptor client. Journal of Molecular Endocrinology, 2012, 49, 57-68.                                                                                                  | 2.5 | 19        |
| 76 | New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harbor<br>Perspectives in Medicine, 2018, 8, a030478.                                                                                                      | 6.2 | 19        |
| 77 | The inverse relationship between prostate specific antigen (PSA) and obesity. Endocrine-Related Cancer, 2018, 25, 933-941.                                                                                                                       | 3.1 | 19        |
| 78 | The activity of caspase-3-like proteases is elevated during the development of colorectal carcinoma.<br>Cancer Letters, 1999, 143, 29-35.                                                                                                        | 7.2 | 18        |
| 79 | Prostate cell lines as models for biomarker discovery: Performance of current markers and the search for new biomarkers. Prostate, 2014, 74, 547-560.                                                                                            | 2.3 | 18        |
| 80 | Elevated levels of tumour apolipoprotein D independently predict poor outcome in breast cancer patients. Histopathology, 2020, 76, 976-987.                                                                                                      | 2.9 | 18        |
| 81 | Suppression of Androgen Receptor Signaling in Prostate Cancer Cells by an Inhibitory Receptor<br>Variant. Molecular Endocrinology, 2006, 20, 1009-1024.                                                                                          | 3.7 | 17        |
| 82 | Characterization of the prostate cancer susceptibility gene <i>KLF6</i> in human and mouse prostate cancers. Prostate, 2013, 73, 182-193.                                                                                                        | 2.3 | 17        |
| 83 | Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo. Menopause, 2014, 21, 79-88.                                                                                       | 2.0 | 17        |
| 84 | A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD)<br>drives prostate cancer growth. ELife, 2021, 10, .                                                                                                  | 6.0 | 16        |
| 85 | High expression of TROP2 characterizes different cell subpopulations in androgen-sensitive and androgen-independent prostate cancer cells. Oncotarget, 2016, 7, 44492-44504.                                                                     | 1.8 | 16        |
| 86 | Prostate cancer cell proliferation is influenced by LDL-cholesterol availability and cholesteryl ester turnover. Cancer & Metabolism, 2022, 10, 1.                                                                                               | 5.0 | 16        |
| 87 | Corepressor effect on androgen receptor activity varies with the length of the CAG encoded polyglutamine repeat and is dependent on receptor/corepressor ratio in prostate cancer cells. Molecular and Cellular Endocrinology, 2011, 342, 20-31. | 3.2 | 15        |
| 88 | Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone, 2018, 116, 232-247.                                                                                | 2.9 | 15        |
| 89 | Ski-interacting protein (SKIP) interacts with androgen receptor in the nucleus and modulates androgen-dependent transcription. BMC Biochemistry, 2013, 14, 10.                                                                                   | 4.4 | 14        |
| 90 | Evaluation of Small Molecule Drug Uptake in Patient-Derived Prostate Cancer Explants by Mass<br>Spectrometry. Scientific Reports, 2019, 9, 15008.                                                                                                | 3.3 | 14        |

| #   | Article                                                                                                                                                                                                             | IF       | CITATIONS             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|
| 91  | Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cellular and<br>Molecular Life Sciences, 2021, 78, 249-270.                                                                      | 5.4      | 14                    |
| 92  | Aberrations in circulating ceramide levels are associated with poor clinical outcomes across<br>localised and metastatic prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 860-870.                | 3.9      | 14                    |
| 93  | An analysis of a multiple biomarker panel to better predict prostate cancer metastasis after radical prostatectomy. International Journal of Cancer, 2019, 144, 1151-1159.                                          | 5.1      | 13                    |
| 94  | Fatty Acid Oxidation Is an Adaptive Survival Pathway Induced in Prostate Tumors by HSP90 Inhibition.<br>Molecular Cancer Research, 2020, 18, 1500-1511.                                                             | 3.4      | 13                    |
| 95  | Unravelling Prostate Cancer Heterogeneity Using Spatial Approaches to Lipidomics and Transcriptomics. Cancers, 2022, 14, 1702.                                                                                      | 3.7      | 13                    |
| 96  | The dynamic and static modification of the epigenome by hormones: A role in the developmental origin of hormone related cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1795, 104-109.             | 7.4      | 12                    |
| 97  | Pharmacodynamics effects of CDK4/6 inhibitor LEE011 (ribociclib) in high-risk, localised prostate cancer: a study protocol for a randomised controlled phase II trial (LEEP study: LEE011 in high-risk,) Tj ETQq1 1 | 0.784314 | rgB <b>1</b> 2¦Overlo |
| 98  | A Novel Role for DNA-PK in Metabolism by Regulating Glycolysis in Castration-Resistant Prostate<br>Cancer. Clinical Cancer Research, 2022, 28, 1446-1459.                                                           | 7.0      | 12                    |
| 99  | Monounsaturated Fatty Acids: Key Regulators of Cell Viability and Intracellular Signaling in Cancer.<br>Molecular Cancer Research, 2022, 20, 1354-1364.                                                             | 3.4      | 12                    |
| 100 | Small Glutamine-Rich Tetratricopeptide Repeat-Containing Protein Alpha (SGTA) Ablation Limits Offspring Viability and Growth in Mice. Scientific Reports, 2016, 6, 28950.                                           | 3.3      | 11                    |
| 101 | lκBα mediates prostate cancer cell death induced by combinatorial targeting of the androgen receptor.<br>BMC Cancer, 2016, 16, 141.                                                                                 | 2.6      | 10                    |
| 102 | Plasma enabled devices for the selective capture and photodynamic identification of prostate cancer cells. Biointerphases, 2020, 15, 031002.                                                                        | 1.6      | 10                    |
| 103 | Assessment of Periprostatic and Subcutaneous Adipose Tissue Lipolysis and Adipocyte Size from Men with Localized Prostate Cancer. Cancers, 2020, 12, 1385.                                                          | 3.7      | 9                     |
| 104 | Patientâ€Derived Prostate Cancer Explants: A Clinically Relevant Model to Assess siRNAâ€Based<br>Nanomedicines. Advanced Healthcare Materials, 2021, 10, 2001594.                                                   | 7.6      | 9                     |
| 105 | Precision nanomedicines for prostate cancer. Nanomedicine, 2018, 13, 803-807.                                                                                                                                       | 3.3      | 7                     |
| 106 | Harnessing the Heterogeneity of Prostate Cancer for Target Discovery Using Patient-Derived Explants.<br>Cancers, 2022, 14, 1708.                                                                                    | 3.7      | 6                     |
| 107 | Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer. BMC Medicine, 2022, 20, 112.                                                          | 5.5      | 6                     |
| 108 | Finding the place of histone deacetylase inhibitors in prostate cancer therapy. Expert Review of<br>Clinical Pharmacology, 2009, 2, 619-630.                                                                        | 3.1      | 5                     |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Sex differences in corneal neovascularization in response to superficial corneal cautery in the rat.<br>PLoS ONE, 2019, 14, e0221566.                                                              | 2.5 | 5         |
| 110 | A Paradigm in Immunochemistry, Revealed by Monoclonal Antibodies to Spatially Distinct Epitopes on<br>Syntenin-1. International Journal of Molecular Sciences, 2019, 20, 6035.                     | 4.1 | 5         |
| 111 | Identification of Prostate Cancer-Associated MicroRNAs in Circulation Using a Mouse Model of<br>Disease. Methods in Molecular Biology, 2013, 1024, 235-246.                                        | 0.9 | 3         |
| 112 | Ex vivo Culture and Lentiviral Transduction of Benign Prostatic Hyperplasia (BPH) Samples.<br>Bio-protocol, 2018, 8, .                                                                             | 0.4 | 3         |
| 113 | Potent Stimulation of the Androgen Receptor Instigates a Viral Mimicry Response in Prostate Cancer.<br>Cancer Research Communications, 2022, 2, 706-724.                                           | 1.7 | 3         |
| 114 | Androgen receptor levels during progression of prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Medical Journal of Indonesia, 0, , 5.                                     | 0.5 | 2         |
| 115 | Molecular and structural basis of androgen receptor responses to dihydrotestosterone,<br>medroxyprogesterone acetate and Δ4-tibolone. Molecular and Cellular Endocrinology, 2014, 382,<br>899-908. | 3.2 | 2         |
| 116 | Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer.<br>Nuclear Medicine and Biology, 2021, 93, 37-45.                                            | 0.6 | 2         |
| 117 | Insights from AR Gene Mutations. , 2009, , 207-240.                                                                                                                                                |     | 2         |
| 118 | Preclinical investigation of a small molecule inhibitor of p300/CBP reveals efficacy in patient-derived prostate tumor explants Journal of Clinical Oncology, 2019, 37, e16534-e16534.             | 1.6 | 2         |
| 119 | Androgens and the androgen receptor (AR). , 0, , 378-391.                                                                                                                                          |     | 0         |
| 120 | MP83-08 COMBINATION OF METFORMIN AND SODIUM VALPROATE FOR PROSTATE CANCER: A RAPID APPROACH FROM BENCH TO CLINICAL TRIAL Journal of Urology, 2017, 197, .                                          | 0.4 | 0         |
| 121 | Abstract 5367: Medroxyprogesterone acetate impedes 5î±-dihydrotesterone induced androgen receptor signaling in normal and malignant human breast epithelial cells. , 2010, , .                     |     | Ο         |
| 122 | Abstract 274: The combined actions of DHT and MPA lead to altered AR signaling in normal and malignant post-menopausal breast epithelial cells. , 2012, , .                                        |     | 0         |
| 123 | Abstract LB-233: Combination of metformin and valproic acid in personalized prostate cancer treatment: the role of p53 and androgen receptor signaling. , 2016, , .                                |     | Ο         |
| 124 | Abstract 1152: Lipid elongation: an unexplored therapeutic target in prostate cancer. , 2017, , .                                                                                                  |     | 0         |
| 125 | Abstract LB-109: PDeX (Patient Derived eXplant) models to determine the basis for response to targeted agents in prostate cancer. , 2017, , .                                                      |     | 0         |
| 126 | An analysis of multiple biomarkers to better predict prostate cancer metastasis and death after radical prostatectomy Journal of Clinical Oncology, 2018, 36, 54-54.                               | 1.6 | 0         |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Sex hormone-binding globulin (SHBG) as a marker of aggressive prostate cancer. Endocrine Abstracts, 0, , .                                                              | 0.0 | 0         |
| 128 | Lipid elongation in prostate cancer: an androgen regulated process and a novel therapeutic target.<br>Oncology Abstracts, 0, , .                                        | 0.0 | 0         |
| 129 | Assessing alterations in organelle contacts during prostate cancer development. Oncology<br>Abstracts, 0, , .                                                           | 0.0 | 0         |
| 130 | Abstract 237: DECR1: The rate limiting enzyme of polyunsaturated fatty acid metabolism and a novel therapeutic target in prostate cancer. , 2020, , .                   |     | 0         |
| 131 | Abstract 4761: Lipidomic analysis of circulating lipids across the natural history of prostate cancer identifies aberrant ceramide metabolism. , 2020, , .              |     | 0         |
| 132 | Abstract 2076: Phospholipid profiling of clinical prostate tissues reveals targetable alterations in membrane lipid composition accompanying tumorigenesis. , 2020, , . |     | 0         |
| 133 | Abstract PO-036: ACSM1 and ACSM3 regulate fatty acid oxidation in prostate cancer to promote growth and protect against oxidative stress. , 2020, , .                   |     | 0         |
| 134 | Abstract 112: Patient derived models reveal impact of the tumor microenvironment on therapeutic response. , 2019, , .                                                   |     | 0         |