Jun Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472905/publications.pdf

Version: 2024-02-01

167	4,135	35	56
papers	citations	h-index	g-index
168	168	168	5187
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photo-curing 3D printing technique and its challenges. Bioactive Materials, 2020, 5, 110-115.	8.6	519
2	Electrospun sodium alginate/poly(ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications. Carbohydrate Polymers, 2012, 87, 737-743.	5.1	130
3	Robust Physically Linked Double-Network Ionogel as a Flexible Bimodal Sensor. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14272-14279.	4.0	118
4	Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydrate Polymers, 2014, 103, 38-45.	5.1	99
5	A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring. Journal of Materials Chemistry C, 2019, 7, 11244-11250.	2.7	90
6	Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydrate Polymers, 2014, 103, 369-376.	5.1	85
7	Heterogeneous Photocatalytic Click Chemistry. Journal of the American Chemical Society, 2016, 138, 13127-13130.	6.6	82
8	ZIF-67/PAN-800 bifunctional electrocatalyst derived from electrospun fibers for efficient oxygen reduction and oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 544, 112-120.	5.0	80
9	Thiol–epoxy/thiol–acrylate hybrid materials synthesized by photopolymerization. Journal of Materials Chemistry C, 2013, 1, 4481.	2.7	78
10	Electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions. Journal of Applied Polymer Science, 2006, 102, 5692-5697.	1.3	76
11	The Ultrafast and Continuous Fabrication of a Polydimethylsiloxane Membrane by Ultravioletâ€Induced Polymerization. Angewandte Chemie - International Edition, 2019, 58, 17175-17179.	7.2	76
12	Flexible, Porous, and Metal–Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery. Nano-Micro Letters, 2019, 11, 8.	14.4	76
13	A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomaterialia, 2020, 114, 193-205.	4.1	75
14	Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning. Polymers for Advanced Technologies, 2009, 20, 147-150.	1.6	69
15	A high performance phenyl-free LED photoinitiator for cationic or hybrid photopolymerization and its application in LED cationic 3D printing. Polymer Chemistry, 2020, 11, 2855-2863.	1.9	65
16	Electrospun Core–Shell Fibrous 2D Scaffold with Biocompatible Poly(Glycerol Sebacate) and Poly-l-Lactic Acid for Wound Healing. Advanced Fiber Materials, 2020, 2, 105-117.	7.9	62
17	Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds. Journal of Applied Polymer Science, 2008, 110, 3328-3335.	1.3	55
18	Study on poly(lactic acid)/natural fibers composites. Journal of Applied Polymer Science, 2012, 125, E526.	1.3	55

#	Article	IF	CITATIONS
19	Crosslinked polyelectrolyte complex fiber membrane based on chitosan–sodium alginate by freeze-drying. RSC Advances, 2014, 4, 41551-41560.	1.7	55
20	A facile strategy for fabricating multifunctional ionogel based electronic skin. Journal of Materials Chemistry C, 2020, 8, 8368-8373.	2.7	55
21	Synthesis and photopolymerization kinetics of oxime ester photoinitiators. Journal of Applied Polymer Science, 2012, 123, 725-731.	1.3	52
22	Photopolymerization of Coumarin-Containing Reversible Photoresponsive Materials Based on Wavelength Selectivity. Industrial & Engineering Chemistry Research, 2019, 58, 2970-2975.	1.8	51
23	Polymer–metal–organic framework core–shell framework nanofibers via electrospinning and their gas adsorption activities. RSC Advances, 2016, 6, 7078-7085.	1.7	50
24	Photocrosslinked electrospun chitosanâ€based biocompatible nanofibers. Journal of Applied Polymer Science, 2008, 109, 3337-3343.	1.3	46
25	Glucose-responsive insulin delivery microhydrogels from methacrylated dextran/concanavalin A: Preparation and in vitro release study. Carbohydrate Polymers, 2012, 89, 117-123.	5.1	46
26	Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties. Chemical Communications, 2016, 52, 8365-8368.	2.2	46
27	Aligned electrospun nanofibers induced by magnetic field. Journal of Applied Polymer Science, 2008, 110, 3368-3372.	1.3	44
28	Decomposable Polyvinyl Alcohol-Based Super-Hydrophobic Three-Dimensional Porous Material for Effective Water/Oil Separation. Langmuir, 2018, 34, 15700-15707.	1.6	43
29	Cationic photopolymerization of bisphenol A diglycidyl ether epoxy under 385 nm. Journal of Applied Polymer Science, 2013, 130, 3698-3703.	1.3	41
30	Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Materials Science and Engineering C, 2017, 70, 1125-1131.	3.8	40
31	A polymer/metal core–shell nanofiber membrane by electrospinning with an electric field, and its application for catalyst support. RSC Advances, 2016, 6, 22996-23007.	1.7	39
32	Electrooxidation of Methanol on Pt @Ni Bimetallic Catalyst Supported on Porous Carbon Nanofibers. Journal of Physical Chemistry C, 2017, 121, 1463-1471.	1.5	39
33	A pHâ€sensitive waterâ€soluble Nâ€carboxyethyl chitosan/poly(hydroxyethyl methacrylate) hydrogel as a potential drug sustained release matrix prepared by photopolymerization technique. Polymers for Advanced Technologies, 2008, 19, 1133-1141.	1.6	38
34	Polymerization shrinkage of (meth)acrylate determined by reflective laser beam scanning. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 923-928.	2.4	38
35	Synthesis and photopolymerization kinetics of benzophenone piperazine oneâ€component initiator. Polymers for Advanced Technologies, 2008, 19, 409-413.	1.6	36
36	Organicâ€soluble chitosan/polyhydroxybutyrate ultrafine fibers as skin regeneration prepared by electrospinning. Journal of Applied Polymer Science, 2010, 118, 3619-3624.	1.3	35

#	Article	IF	CITATIONS
37	Reducing volume shrinkage by low-temperature photopolymerization. Journal of Applied Polymer Science, 2007, 104, 1126-1130.	1.3	32
38	Photocrosslinkable bioadhesive based on dextran and PEG derivatives. Materials Science and Engineering C, 2014, 35, 300-306.	3.8	31
39	Fabrication of core–shell nanofibers by single capillary electrospinning combined with vapor induced phase separation. New Journal of Chemistry, 2013, 37, 2917.	1.4	30
40	Characterization and application of chondroitin sulfate/polyvinyl alcohol nanofibres prepared by electrospinning. Carbohydrate Polymers, 2016, 143, 239-245.	5.1	30
41	Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method. Journal of Coatings Technology Research, 2013, 10, 231-237.	1.2	29
42	The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly(methyl) Tj ETQq0 0 0 rgBT /0 Advances, 2015, 5, 79679-79686.	Overlock 1 1.7	.0 Tf 50 547 1 29
43	Preparation of antifog and antibacterial coatings by photopolymerization. Polymers for Advanced Technologies, 2014, 25, 651-656.	1.6	28
44	Freeze-dried chitosan–sodium hyaluronate polyelectrolyte complex fibers as tissue engineering scaffolds. New Journal of Chemistry, 2014, 38, 1211.	1.4	28
45	Design of photoinitiator-functionalized hydrophilic nanogels with uniform size and excellent biocompatibility. Polymer Chemistry, 2019, 10, 2812-2821.	1.9	28
46	Control of concentration gradient and initiating gradient photopolymerization of polysiloxane benzophenone photoinitiator. Journal of Materials Chemistry, 2011, 21, 17290.	6.7	27
47	Synthesis and characterization of copolymerizable oneâ€component type II photoinitiator. Polymers for Advanced Technologies, 2008, 19, 1305-1310.	1.6	26
48	Fe/Ni bimetal and nitrogen co-doped porous carbon fibers as electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 560, 330-337.	5.0	26
49	A novel high-refractive index episulfide-thiol polymer for nanoimprinting optical elements. Journal of Materials Chemistry C, 2018, 6, 8823-8831.	2.7	25
50	Electrospun bamboo-like Fe3C encapsulated Fe-Si-N co-doped nanofibers for efficient oxygen reduction. Journal of Colloid and Interface Science, 2019, 546, 231-239.	5.0	25
51	Facile method for preparation of superfine copper nanoparticles with high concentration of copper chloride through photoreduction. RSC Advances, 2014, 4, 27381-27388.	1.7	24
52	Photochromic Polymers Based on Fluorophenyl Oxime Ester Photoinitiators as Photoswitchable Molecules. Macromolecules, 2020, 53, 5701-5710.	2.2	24
53	Microstructure and surface property of macroscopic gradient polymer initiated by polysiloxane benzophenone photoinitiators with different silicone chain lengths. Journal of Materials Chemistry, 2012, 22, 9166.	6.7	23
54	Photopolymerization of clay/polyurethane nanocomposites induced by intercalated initiator. Journal of Applied Polymer Science, 2007, 106, 2656-2660.	1.3	22

#	Article	IF	CITATIONS
55	Hemp derived N-doped highly porous carbon containing Co nanoparticles as electrocatalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 559, 21-28.	5.0	22
56	Rapid solid-state photopolymerization of octadecyl acrylate: low shrinkage and insensitivity to oxygen. Polymer International, 2013, 62, 1692-1697.	1.6	21
57	The DOPAâ€functionalized bioadhesive with properties of photocrosslinked and thermoresponsive. Journal of Applied Polymer Science, 2014, 131, .	1.3	21
58	Preparation of silica/polyurethane nanocomposites by UVâ€induced polymerization from surfaces of silica. Journal of Applied Polymer Science, 2009, 111, 1936-1941.	1.3	20
59	Multicomponent Doped Sugar-Coated Nanofibers for Peroxymonosulfate Activation. ACS Applied Nano Materials, 2019, 2, 6998-7007.	2.4	20
60	Methyl Benzoylformate Derivative Norrish Type I Photoinitiators for Deep-Layer Photocuring under Near-UV or Visible LED. Macromolecules, 2021, 54, 3854-3864.	2.2	20
61	Synthesis and photopolymerization kinetics of polymeric oneâ€component type II photoinitiator containing benzophenone moiety and tertiary amine. Polymer Engineering and Science, 2008, 48, 884-888.	1.5	19
62	Photopolymerization kinetics of cycloaliphatic epoxide–acrylate hybrid monomer. Polymer International, 2007, 56, 1292-1297.	1.6	18
63	Core-shell structure PEO/CS nanofibers based on electric field induced phase separation via electrospinning and its application. Journal of Polymer Science Part A, 2015, 53, 2298-2311.	2.5	18
64	Regulated basal and bolus insulin release from glucose-responsive core-shell microspheres based on concanavalin A-sugar affinity. International Journal of Biological Macromolecules, 2018, 113, 889-899.	3.6	18
65	Can Chain-Reaction Polymerization of Octadecyl Acrylate Occur in Crystal?. Macromolecules, 2018, 51, 3731-3737.	2.2	18
66	Lyophilization as a novel approach for preparation of water resistant HA fiber membranes by crosslinked with EDC. Carbohydrate Polymers, 2014, 102, 8-11.	5.1	17
67	Novel Bisphenol A Epoxide–Acrylate Hybrid Oligomer and Its Photopolymerization. Designed Monomers and Polymers, 2008, 11, 383-394.	0.7	16
68	Electrospinning of Poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) nanofibers with feature surface microstructure. Journal of Applied Polymer Science, 2013, 127, 2867-2874.	1.3	15
69	Temperature controlled cationic photo-curing of a thick, dark composite. RSC Advances, 2017, 7, 4046-4053.	1.7	15
70	The Ultrafast and Continuous Fabrication of a Polydimethylsiloxane Membrane by Ultravioletâ€Induced Polymerization. Angewandte Chemie, 2019, 131, 17335-17339.	1.6	15
71	Fabrication of a Surface Adhesion Layer for Hydrogel Sensors via Photografting. ACS Applied Polymer Materials, 2020, 2, 4140-4148.	2.0	15
72	Chitosan for constructing stable polymer-inorganic suspensions and multifunctional membranes for wound healing. Carbohydrate Polymers, 2022, 285, 119209.	5.1	15

#	Article	IF	CITATIONS
73	Preparation and characterization of chitosan/poly(vinyl alcohol)/poly(vinyl pyrrolidone) electrospun fibers. Frontiers of Materials Science in China, 2007, 1, 432-436.	0.5	14
74	Preparation and characterization of Nâ€alkylated chitosan derivatives. Journal of Applied Polymer Science, 2008, 109, 1093-1098.	1.3	14
75	Synthesis and characteristics of photopolymerized benzophenone. Journal of Polymer Science Part A, 2017, 55, 313-320.	2.5	14
76	Photopolymerization and Characteristics of Polyurethane/Organoclay Nanocomposites. Macromolecular Reaction Engineering, 2007, 1, 384-390.	0.9	13
77	Release of lysozyme from electrospun PVA/lysozyme-gelatin scaffolds. Frontiers of Materials Science in China, 2008, 2, 261-265.	0.5	13
78	Synthesis and photopolymerization characterization of a novel difunctional photoinitiator. Journal of Applied Polymer Science, 2008, 108, 665-670.	1.3	13
79	A study of nanogels with different polysiloxane chain lengths for photopolymerization stress reduction and modification of polymer network properties. RSC Advances, 2015, 5, 33729-33736.	1.7	13
80	From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy. Chemical Communications, 2017, 53, 328-331.	2.2	13
81	Low-temperature photopolymerization and post-cure characteristics of acrylates. Polymer International, 2007, 56, 707-710.	1.6	12
82	Rapid photopolymerization of octadecyl methacrylate in the solid state. New Journal of Chemistry, 2013, 37, 444-450.	1.4	12
83	Cationic photopolymerization of 3â€benzyloxymethylâ€3â€ethylâ€oxetane. Polymer International, 2016, 65, 1486-1492.	1.6	12
84	Polyethylenimine Grafted Chitosan Nanofiber Membrane as Adsorbent for Selective Elimination of Anionic Dyes. Fibers and Polymers, 2020, 21, 2231-2238.	1.1	12
85	UV-Nanoimprinting Lithography Photoresists with No Photoinitiator and Low Polymerization Shrinkage. Industrial & Engineering Chemistry Research, 2020, 59, 7564-7574.	1.8	12
86	Preparation and characterization of a water soluble methylated <i>β</i> yclodextrin/camphorquinone complex. Polymers for Advanced Technologies, 2009, 20, 723-728.	1.6	11
87	Preparation and characterization of a bioadhesive with poly (vinyl alcohol) crosslinking agent. Journal of Applied Polymer Science, 2013, 127, 5051-5058.	1.3	11
88	Photo and Thermal Cured Siliconâ€Containing Diethynylbenzene Fibers via Melt Electrospinning with Enhanced Thermal Stability. Journal of Polymer Science Part A, 2017, 55, 2815-2823.	2.5	11
89	Effect of electric potential and coulombic interactions on electrospinning nanofiber distribution. Polymer International, 2008, 57, 1194-1197.	1.6	10
90	Synthesis and Evaluation of 4-Benzophenone Methoxyl Methacrylate As a Polymerizable Photoinitiator. Polymer Journal, 2008, 40, 228-232.	1.3	10

#	Article	IF	CITATIONS
91	Preparation and properties of waterâ€soluble chitosan and polyvinyl alcohol blend films as potential bone tissue engineering matrix. Polymers for Advanced Technologies, 2010, 21, 189-195.	1.6	10
92	Investigation of stabilizerâ€free dispersion polymerization process of styrene and maleic anhydride copolymer microspheres. Journal of Polymer Science Part A, 2010, 48, 5652-5658.	2.5	10
93	Ultraviolet photopolymerization induced by a triazine derivative. Journal of Applied Polymer Science, 2011, 121, 2013-2017.	1.3	10
94	1,3â€dioxane methylcoumarin as a novel photoinitiator for free radical polymerization. Journal of Applied Polymer Science, 2012, 125, 2371-2375.	1.3	10
95	Photopolymerization of $1\hat{a} \in \mathbb{R}$ damantyl acrylate pohotoinitiated by free radical photoinitiators. Journal of Applied Polymer Science, 2012, 123, 26-31.	1.3	10
96	Construction of a Repairable Fixed Porous Catalytic Bed Loaded with Gold Nanoparticles via Multivalent Host–Guest Interactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 7587-7593.	3.2	10
97	Synthesis, one/two-photon optical and electrochemical properties and the photopolymerization-sensitizing effect of anthracene-based dyes: influence of the donor groups. New Journal of Chemistry, 2019, 43, 6737-6745.	1.4	10
98	The Superhydrophobic Fluorineâ€Containing Material Prepared Through Biomimetic UV Lithography for Oil–Water Separation and Antiâ€Bioadhesion. Macromolecular Chemistry and Physics, 2021, 222, 2100149.	1.1	10
99	Nondiffusion-Controlled Photoelectron Transfer Induced by Host–Guest Complexes to Initiate Cationic Photopolymerization. Macromolecules, 2021, 54, 8314-8320.	2.2	10
100	Synthesis and photopolymerization kinetics of multifunctional aromatic urethane acrylates containing tertiary amine group. Polymers for Advanced Technologies, 2009, 20, 16-20.	1.6	9
101	Photopolymerization kinetics and properties of a trifunctional epoxy acrylate. Designed Monomers and Polymers, 2013, 16, 274-282.	0.7	9
102	Synthesis and characterization of siloxane photopolymers used for microfluidic devices. New Journal of Chemistry, 2015, 39, 2532-2540.	1.4	9
103	Facile fabrication of PAN/PDMS core-shell nanofibers from synchronous photopolymerization. Materials Science and Engineering C, 2017, 77, 326-332.	3.8	9
104	Surfaceâ€Selective Grafting of Crosslinking Layers on Hydrogel Surfaces via Two Different Mechanisms of Photopolymerization for Siteâ€Controllable Release. Macromolecular Rapid Communications, 2018, 39, e1800144.	2.0	9
105	Highly Stretchable and Sensitive Strain Sensor based on lonogel/Ag Synergistic Conductive Network. Advanced Materials Interfaces, 2022, 9, .	1.9	9
106	Smart Hydrogel Sensors with Antifreezing, Antifouling Properties for Wound Healing. ACS Biomaterials Science and Engineering, 2022, 8, 1867-1877.	2.6	9
107	Photopolymerization of alicyclic methacrylate hydrogels for controlled release. Polymers for Advanced Technologies, 2009, 20, 607-612.	1.6	8
108	Design and properties of novel photothermal initiators for photoinduced thermal frontal polymerization. Polymer Chemistry, 2020, 11, 3980-3986.	1.9	8

#	Article	IF	CITATIONS
109	Surface Modification of Carbon Fiber by Electro-Polymerization: Continuous Production, Thickness Control, Colorization, and Preparation of CFRP. ACS Applied Polymer Materials, 2020, 2, 2594-2601.	2.0	8
110	Photoâ€euring <scp>3D</scp> printing robust elastomers with ultralow viscosity resin. Journal of Applied Polymer Science, 2021, 138, 49965.	1.3	8
111	Pillar[6]arene: Light Cleaves Macrocycle to Linear Oligomer Biradical to Initiate Photopolymerization. Organic Letters, 2021, 23, 1709-1713.	2.4	8
112	Design of a nearâ€infraredâ€triggered photo/thermal dualâ€responsive composite carrier with excellent biocompatibility for controllable drug release. Journal of Applied Polymer Science, 2022, 139, .	1.3	8
113	Electrospun ultrafine composite fibers from organicâ€soluble chitosan and poly(ethylene oxide). Journal of Applied Polymer Science, 2010, 117, 2113-2120.	1.3	7
114	Cyclic acetals as coinitiators in CQ-induced photopolymerizations. Polymer Journal, 2010, 42, 450-455.	1.3	7
115	Poly(ascorbyl acrylate)s: Synthesis and evaluation of their redox polymerization ability in the presence of hydrogen peroxide. Journal of Polymer Science Part A, 2011, 49, 1999-2007.	2.5	7
116	Electroâ€induced Cationic Polymerization of Vinyl Ethers by Using Ionic Liquid 1â€Butylâ€3â€methyÂlimidazolium Tetrafluoroborate as Initiator. Macromolecular Chemistry and Physics, 2015, 216, 380-385.	1.1	7
117	Investigation on the photopolymerization possibility of 1,6-hexanediol diacrylate in crystalline-state. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 273-280.	2.0	7
118	Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering. Frontiers of Materials Science, 2017, 11, 307-317.	1.1	7
119	Restorative dental resin functionalized with methacryloxy propyl trimethoxy silane to induce reversible in situ generation of enamel-like hydroxyapatite. Journal of Materials Science, 2018, 53, 16183-16197.	1.7	7
120	0 + 0 = 2: Changeover of Stability and Photopolymerization Kinetics for the Rotator Phase of Long-Chain Acrylate through the Ultra-Addition Effect in Binary Systems. Macromolecules, 2018, 51, 5904-5910.	2.2	7
121	Photopolymerization and characteristics of reactive organoclay–polyurethane nanocomposites. Polymer Composites, 2009, 30, 612-618.	2.3	6
122	Synthesis and photopolymerization of 2â∈(acryloyloxy)ethyl piperidineâ∈1â∈carboxylate and 2â∈(acryloyloxy)ethyl morpholoneâ∈4â∈carboxylate. Journal of Applied Polymer Science, 2011, 119, 1978-1985.	1.3	6
123	Synthesis of gradient polymer by using polysiloxaneâ€based photoinitiator. Polymers for Advanced Technologies, 2012, 23, 1246-1251.	1.6	6
124	Synthesis and characterization of diethanolamineâ€containing glass ionomer cement. Journal of Applied Polymer Science, 2012, 125, 1330-1338.	1.3	6
125	Study on the biocomposites with poly(ethylene glycol) dimethacrylate and surfacedâ€grafted hydroxyapatite nanoparticles. Journal of Applied Polymer Science, 2013, 127, 1737-1743.	1.3	6
126	Preparation and characterization of UVâ€cured hybrid coatings by triethoxysilaneâ€modified dimethacrylate based on bisphenolâ€s epoxy. Journal of Applied Polymer Science, 2013, 129, 2189-2195.	1.3	6

#	Article	lF	Citations
127	A novel high efficiency benzophenone based polymeric photoinitiator from ring-opening polymerization of benzoxazine. Polymer Science - Series B, 2014, 56, 632-638.	0.3	6
128	Templateâ€essisted hydrophobic porous silica membrane: A purifier sieve for organic solvents. Journal of Applied Polymer Science, 2018, 135, 45822.	1.3	6
129	Macrocyclic Photoinitiator Based on Prism[5]arene Matching LEDs Light with Low Migration. Macromolecular Rapid Communications, 2021, 42, e2100299.	2.0	6
130	A bis-acrylate functionalized enone as photoinitiator and crosslinker in photopolymerization. Progress in Organic Coatings, 2022, 162, 106587.	1.9	6
131	Preparation of threeâ€dimensional structure controllable nanofibers by electrospinning. Polymers for Advanced Technologies, 2008, 19, 1150-1153.	1.6	5
132	Synthesis and characterization of an amphiphilic hyperbranched poly(amineâ€ester)â€ <i>co</i> àâ€ <scp>D,L</scp> â€lactide (HPAEâ€ <i>co</i> àâ€PLA) copolymers and their nanoparticles for protein drug delivery. Journal of Applied Polymer Science, 2010, 117, 1156-1167.	1.3	5
133	Transformation of complex internal structures of poly(ethylene oxide)/chitosan oligosaccharide electrospun nanofibers. Polymer International, 2012, 61, 135-140.	1.6	5
134	Photopolymerization nanocomposite initiated by montmorillonite intercalated initiator. Polymer Bulletin, 2012, 68, 1-13.	1.7	5
135	Synthesis and properties of polyurethane acrylate modified by different contents of stearyl alcohol. Journal of Coatings Technology Research, 2015, 12, 197-204.	1.2	5
136	Flexible electronics based on magnetic printing and the volume additive principle. Journal of Materials Chemistry C, 2017, 5, 8052-8058.	2.7	5
137	NIRâ€II Fluorescent Probe for Detecting Trimethylamine Based on Intermolecular Charge Transfer. Chemistry - A European Journal, 2022, 28, e202200113.	1.7	5
138	Study of UV-curable composite resin of transfer tray for orthodontics. Frontiers of Materials Science in China, 2008, 2, 430-436.	0.5	4
139	Electro-initiated cationic polymerization in the presence of potassium hexafluoroantimonate. RSC Advances, 2014, 4, 22224-22229.	1.7	4
140	A one-component photoinitiator based on 4-methylbenzophenone and morpholine. Polymer Science - Series B, 2016, 58, 689-694.	0.3	4
141	Binary phase solidâ€state photopolymerization behavior of acrylate cryogels under different light sources. Journal of Applied Polymer Science, 2018, 135, 46686.	1.3	4
142	UV-cured organic–inorganic hybrid moisture barrier materials based on polybutadiene dimethacrylate. Journal of Coatings Technology Research, 2019, 16, 429-437.	1.2	4
143	Synthesis and Properties of Cationic Photocurable Polymethylsiloxane/Eugenol-Modified Oxetane Monomers. Industrial & Engineering Chemistry Research, 2022, 61, 2792-2798.	1.8	4
144	Synthesis and Photopolymerization of 2-(Acryloyloxy)ethyl Pyrrolidine-1-Carboxylate. Designed Monomers and Polymers, 2008, 11, 235-242.	0.7	3

#	Article	IF	CITATIONS
145	Synthesis and photopolymerization of piperonylamine derivatives as a polymerizable cyclic acetals coâ€initiator for lightâ€cured unfilled dental resins. Polymers for Advanced Technologies, 2010, 21, 609-614.	1.6	3
146	Preparation of chitosan/alginate microcapsules by high-voltage electrostatic method. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 48-53.	0.4	3
147	Electrospun composite nanofibrous membrane as wound dressing with good adhesion. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 221-226.	0.4	3
148	Photopolymerization kinetics and thermal properties of dimethacrylate based on bisphenolâ€6. Journal of Applied Polymer Science, 2013, 127, 3418-3423.	1.3	3
149	Reversible CO ₂ -Responsive and Photopolymerizable Prepolymers for Stepwise Regulation on Demand. Industrial & Demand. Industr	1.8	3
150	Synthesis of highly flexible silica aerogels by photoacids generation. Journal of Porous Materials, 2018, 25, 1027-1034.	1.3	3
151	Spatial Adjustment Strategy to Improve the Sensitivity of Ionogels for Flexible Sensors. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	3
152	Synthesis and photopolymerization kinetics of a photoinitiator containing in-chain benzophenone and amine structure. Frontiers of Materials Science in China, 2008, 2, 194-199.	0.5	2
153	Synthesis and photopolymerization of 2-(acryloyloxy) ethyl bis (2-(acryloyloxy) ethyl)carbamate. Frontiers of Materials Science in China, 2009, 3, 259-265.	0.5	2
154	Aligned polymer fibers produced via an additive electric field. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 44-47.	0.4	2
155	Crosslinked microparticle preparation in supercritical carbon dioxide with photopolymerization. Journal of Applied Polymer Science, 2012, 125, 1460-1466.	1.3	2
156	Dynamic mechanical analysis of elastic modulus development of dental composites. Polymer Composites, 2013, 34, 580-586.	2.3	2
157	The effect of solvent on postcuring in free radical photopolymerization. Journal of Applied Polymer Science, 2017, 134, .	1.3	2
158	Controllable Release Mode Based on ATP Hydrolysis-Fueled Supra-Amphiphile Assembly. ACS Applied Bio Materials, 2021, 4, 3532-3538.	2.3	2
159	Synthesis and photopolymerization kinetics of multifunctional aliphatic urethane acrylates containing the tertiary amine group. Journal of Applied Polymer Science, 2009, 113, 896-900.	1.3	1
160	Effect of cyclic acetals structure on efficiency of photoinitiation. Polymers for Advanced Technologies, 2010, 21, 430-434.	1.6	1
161	Preparation of biaxial orientation mats from single fibers. Polymers for Advanced Technologies, 2010, 21, 606-608.	1.6	1
162	Chemically modified polymeric filtration membranes for the selective elimination of active pharmaceutical ingredients from water. Polymers for Advanced Technologies, 2013, 24, 861-865.	1.6	1

#	Article	IF	CITATIONS
163	The unusual improvement of normal alkyl alcohol on solid-state cationic photopolymerization of octadecyl vinyl ether. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 52-57.	2.0	1
164	Solid-state photopolymerization of long-chain vinyl carboxylates through binary molecular arrangement adjustment. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112770.	2.0	1
165	Patterned Magnetofluids via Magnetic Printing and Photopolymerization for Multifunctional Flexible Electronic Sensors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30332-30342.	4.0	1
166	Lightâ€curable composite of siloxane/hydroxyapatite prepared by the sol–gel process for bone defect treatment. Polymer Composites, 2011, 32, 1235-1244.	2.3	0
167	Macromol. Chem. Phys. 4/2015. Macromolecular Chemistry and Physics, 2015, 216, 468-468.	1.1	0