Xianbo Lu

List of Publications by Citations

Source: https://exaly.com/author-pdf/8472683/xianbo-lu-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,481 58 30 59 h-index g-index citations papers 61 3,824 9.5 5.34 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
58	Recent advances in nanomaterials for water protection and monitoring. <i>Chemical Society Reviews</i> , 2017 , 46, 6946-7020	58.5	332
57	Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 3203-9	11.8	283
56	Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. <i>Biomacromolecules</i> , 2006 , 7, 975-80	6.9	275
55	Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. <i>Electrochemistry Communications</i> , 2006 , 8, 874-878	5.1	160
54	2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. <i>Biosensors and Bioelectronics</i> , 2018 , 107, 69-75	11.8	153
53	3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. <i>Biosensors and Bioelectronics</i> , 2015 , 65, 295-301	11.8	149
52	Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. <i>Biosensors and Bioelectronics</i> , 2008 , 24, 93-8	11.8	144
51	Carbon nanofiber-based composites for the construction of mediator-free biosensors. <i>Biosensors and Bioelectronics</i> , 2008 , 23, 1236-43	11.8	144
50	Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. <i>Biosensors and Bioelectronics</i> , 2012 , 35, 193-199	11.8	131
49	Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 102-6	11.8	120
48	Room Temperature Ionic Liquid Based Polystyrene Nanofibers with Superhydrophobicity and Conductivity Produced by Electrospinning. <i>Chemistry of Materials</i> , 2008 , 20, 3420-3424	9.6	113
47	Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. <i>Biomaterials</i> , 2006 , 27, 5740-7	15.6	107
46	Temperature, ionic strength and pH induced electrochemical switching of smart polymer interfaces. <i>Chemical Communications</i> , 2006 , 4820-2	5.8	94
45	Development of biosensor technologies for analysis of environmental contaminants. <i>Trends in Environmental Analytical Chemistry</i> , 2014 , 2, 25-32	12	72
44	Polybrominated diphenyl ethers in sediments of the Daliao River Estuary, China: levels, distribution and their influencing factors. <i>Chemosphere</i> , 2011 , 82, 1262-7	8.4	69
43	PCDD/Fs and PCBs in sediments of the Liaohe River, China: levels, distribution, and possible sources. <i>Chemosphere</i> , 2010 , 79, 754-62	8.4	69
42	Hemoglobin entrapped within a layered spongy Co3O4 based nanocomposite featuring direct electron transfer and peroxidase activity. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1427		63

(2008-2016)

41	Response Characteristics of Bisphenols on a Metal-Organic Framework-Based Tyrosinase Nanosensor. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 16533-9	9.5	55
40	Assembly of quantum dots-mesoporous silicate hybrid material for protein immobilization and direct electrochemistry. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 695-700	11.8	50
39	Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. <i>Sensors and Actuators B: Chemical</i> , 2005 , 107, 812-817	8.5	47
38	Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications. <i>Biosensors and Bioelectronics</i> , 2014 , 62, 134-9	11.8	46
37	Advances in sensing and biosensing of bisphenols: A review. <i>Analytica Chimica Acta</i> , 2018 , 998, 1-27	6.6	43
36	A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4707		42
35	Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. <i>Food Chemistry</i> , 2018 , 264, 218-225	8.5	40
34	Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. <i>Biosensors and Bioelectronics</i> , 2009 , 25, 244-7	11.8	40
33	Reversible immobilization and direct electron transfer of cytochrome c on a pH-sensitive polymer interface. <i>Chemistry - A European Journal</i> , 2007 , 13, 2847-53	4.8	38
32	Catalytic destruction of chlorinated aromatic pollutants over mesoporous CuxMg1\(\textbf{A}\) Al2O4 spinel oxides. <i>Applied Catalysis B: Environmental</i> , 2011 , 101, 606-612	21.8	36
31	Gold Nanoparticles dotted Reduction Graphene Oxide Nanocomposite Based Electrochemical Aptasensor for Selective, Rapid, Sensitive and Congener-Specific PCB77 Detection. <i>Scientific Reports</i> , 2017 , 7, 5191	4.9	32
30	Electrochemical DNA biosensor for screening of chlorinated benzene pollutants. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 4040-5	11.8	30
29	Poly(N-isopropylacrylamide) Interfaces with Dissimilar Thermo-responsive Behavior for Controlling Ion Permeation and Immobilization. <i>Advanced Functional Materials</i> , 2007 , 17, 3377-3382	15.6	30
28	Graphdiyne: A new promising member of 2D all-carbon nanomaterial as robust electrochemical enzyme biosensor platform. <i>Carbon</i> , 2020 , 156, 568-575	10.4	30
27	Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC-MS/MS. <i>Journal of Environmental Sciences</i> , 2018 , 63, 116-125	6.4	29
26	Destruction of polychlorinated aromatic compounds by spinel-type complex oxides. <i>Environmental Science & Environmental Scienc</i>	10.3	29
25	Robust Single-Molecule Enzyme Nanocapsules for Biosensing with Significantly Improved Biosensor Stability. <i>Analytical Chemistry</i> , 2020 , 92, 5830-5837	7.8	28
24	Polychlorinated dibenzo-p-dioxins and dibenzofurans in soils and sediments from Daliao River Basin, China. <i>Chemosphere</i> , 2008 , 73, 1640-8	8.4	27

23	Quantification of Short-Chain Chlorinated Paraffins by Deuterodechlorination Combined with Gas Chromatography-Mass Spectrometry. <i>Environmental Science & Environmental Scienc</i>	10.3	27
22	CoO nanoparticles supported mesoporous carbon framework interface for glucose biosensing. <i>Talanta</i> , 2019 , 203, 112-121	6.2	25
21	Amino acid ionic liquid modified mesoporous carbon: a tailor-made nanostructure biosensing platform. <i>ChemSusChem</i> , 2012 , 5, 1918-25	8.3	25
20	A novel electrochemical PCB77-binding DNA aptamer biosensor for selective detection of PCB77. Journal of Electroanalytical Chemistry, 2016 , 771, 45-49	4.1	25
19	Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China. <i>Environmental Pollution</i> , 2016 , 216, 893-901	9.3	24
18	Bioaccumulation and human health implications of essential and toxic metals in freshwater products of Northeast China. <i>Science of the Total Environment</i> , 2019 , 673, 768-776	10.2	21
17	Bioaccumulation and human health risks of OCPs and PCBs in freshwater products of Northeast China. <i>Environmental Pollution</i> , 2018 , 242, 1527-1534	9.3	21
16	Enrichment of polycyclic aromatic hydrocarbons in seawater with magnesium oxide microspheres as a solid-phase extraction sorbent. <i>Analytica Chimica Acta</i> , 2010 , 678, 183-8	6.6	21
15	Tyrosinase nanocapsule based nano-biosensor for ultrasensitive and rapid detection of bisphenol A with excellent stability in different application scenarios. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 1124	10 ¹ 7 ^{1.8}	20
14	Direct Electrochemical Tyrosinase Biosensor based on Mesoporous Carbon and Co3O4 Nanorods for the Rapid Detection of Phenolic Pollutants. <i>ChemElectroChem</i> , 2014 , 1, 808-816	4.3	20
13	Reduced Graphene Oxide-Gold Nanoparticle Nanoframework as a Highly Selective Separation Material for Aflatoxins. <i>Scientific Reports</i> , 2017 , 7, 14484	4.9	15
12	Irrigation-induced pollution of organochlorine pesticides and polychlorinated biphenyls in paddy field ecosystem of Liaohe River Plain, China. <i>Science Bulletin</i> , 2013 , 58, 1751-1759		14
11	Ammonium hydroxide enhancing electrospray response and boosting sensitivity of bisphenol A and its analogs. <i>Talanta</i> , 2018 , 182, 590-594	6.2	11
10	Quantification of Cl-PAHs and their parent compounds in fish by improved ASE method and stable isotope dilution GC-MS. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 186, 109775	7	10
9	Surface modification of spherical magnesium oxide with ethylene glycol. <i>Materials Letters</i> , 2009 , 63, 1514-1516	3.3	9
8	The selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene by solid-phase extraction with MgO microspheres as sorbents. <i>Journal of Chromatography A</i> , 2011 , 1218, 9149-54	4.5	7
7	Levels and patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in foodstuffs of animal origin from Chinese markets and implications of dietary exposure. <i>Environmental Pollution</i> , 2020 , 273, 116344	9.3	7
6	Nitrogen-Doped Graphdiyne as a Robust Electrochemical Biosensing Platform for Ultrasensitive Detection of Environmental Pollutants. <i>Analytical Chemistry</i> , 2021 , 93, 8656-8662	7.8	7

LIST OF PUBLICATIONS

5	Accumulation characteristics and estimated dietary intakes of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in plant-origin foodstuffs from Chinese markets. <i>Science of the Total Environment</i> , 2021 , 775, 145830	10.2	7
4	Preparation, characterization and application of octadecyl modified magnesium oxide microspheres. <i>Analytica Chimica Acta</i> , 2011 , 693, 54-61	6.6	6
3	An electrochemical deoxyribonucleic acid biosensor for rapid genotoxicity screening of chemicals. <i>Analytical Methods</i> , 2015 , 7, 3347-3352	3.2	4
2	Retention of nonionic organic compounds on thermally treated soils. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 3677-82	10.3	2
1	Ultrathin graphdiyne nanosheets confining Cu quantum dots as robust electrocatalyst for biosensing featuring remarkably enhanced activity and stability <i>Biosensors and Bioelectronics</i> , 2022 , 205, 114111	11.8	2