Xianbo Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472683/publications.pdf

Version: 2024-02-01

		109321	133252
58	4,236 citations	35	59
papers	citations	h-index	g-index
<i>C</i> 1	<i>C</i> 1	<i>C</i> 1	FF27
61	61	61	5527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent advances in nanomaterials for water protection and monitoring. Chemical Society Reviews, 2017, 46, 6946-7020.	38.1	441
2	Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosensors and Bioelectronics, 2007, 22, 3203-3209.	10.1	312
3	Composite System Based on Chitosan and Room-Temperature Ionic Liquid:Â Direct Electrochemistry and Electrocatalysis of Hemoglobin. Biomacromolecules, 2006, 7, 975-980.	5.4	289
4	2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosensors and Bioelectronics, 2018, 107, 69-75.	10.1	251
5	3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosensors and Bioelectronics, 2015, 65, 295-301.	10.1	181
6	Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications, 2006, 8, 874-878.	4.7	173
7	Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosensors and Bioelectronics, 2008, 24, 93-98.	10.1	166
8	Carbon nanofiber-based composites for the construction of mediator-free biosensors. Biosensors and Bioelectronics, 2008, 23, 1236-1243.	10.1	158
9	Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Biosensors and Bioelectronics, 2012, 35, 193-199.	10.1	135
10	Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets. Biosensors and Bioelectronics, 2007, 23, 102-106.	10.1	125
11	Room Temperature Ionic Liquid Based Polystyrene Nanofibers with Superhydrophobicity and Conductivity Produced by Electrospinning. Chemistry of Materials, 2008, 20, 3420-3424.	6.7	123
12	Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials, 2006, 27, 5740-5747.	11.4	116
13	Temperature, ionic strength and pH induced electrochemical switching of smart polymer interfaces. Chemical Communications, 2006, , 4820.	4.1	100
14	Development of biosensor technologies for analysis of environmental contaminants. Trends in Environmental Analytical Chemistry, 2014, 2, 25-32.	10.3	96
15	PCDD/Fs and PCBs in sediments of the Liaohe River, China: Levels, distribution, and possible sources. Chemosphere, 2010, 79, 754-762.	8.2	79
16	Polybrominated diphenyl ethers in sediments of the Daliao River Estuary, China: Levels, distribution and their influencing factors. Chemosphere, 2011, 82, 1262-1267.	8.2	75
17	Response Characteristics of Bisphenols on a Metal–Organic Framework-Based Tyrosinase Nanosensor. ACS Applied Materials & Interfaces, 2016, 8, 16533-16539.	8.0	72
18	Hemoglobin entrapped within a layered spongy Co3O4 based nanocomposite featuring direct electron transfer and peroxidase activity. Journal of Materials Chemistry, 2007, 17, 1427.	6.7	70

#	Article	IF	CITATIONS
19	Advances in sensing and biosensing of bisphenols: A review. Analytica Chimica Acta, 2018, 998, 1-27.	5.4	66
20	Graphdiyne: A new promising member of 2D all-carbon nanomaterial as robust electrochemical enzyme biosensor platform. Carbon, 2020, 156, 568-575.	10.3	64
21	Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chemistry, 2018, 264, 218-225.	8.2	63
22	Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. Sensors and Actuators B: Chemical, 2005, 107, 812-817.	7.8	56
23	Assembly of quantum dots-mesoporous silicate hybrid material for protein immobilization and direct electrochemistry. Biosensors and Bioelectronics, 2007, 23, 695-700.	10.1	55
24	Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications. Biosensors and Bioelectronics, 2014, 62, 134-139.	10.1	51
25	A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. Journal of Materials Chemistry, 2009, 19, 4707.	6.7	45
26	Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC–MS/MS. Journal of Environmental Sciences, 2018, 63, 116-125.	6.1	44
27	Catalytic destruction of chlorinated aromatic pollutants over mesoporous CuxMg1â^'xAl2O4 spinel oxides. Applied Catalysis B: Environmental, 2011, 101, 606-612.	20.2	42
28	Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. Biosensors and Bioelectronics, 2009, 25, 244-247.	10.1	41
29	Robust Single-Molecule Enzyme Nanocapsules for Biosensing with Significantly Improved Biosensor Stability. Analytical Chemistry, 2020, 92, 5830-5837.	6.5	41
30	Reversible Immobilization and Direct Electron Transfer of Cytochromeâ€c on a pH-Sensitive Polymer Interface. Chemistry - A European Journal, 2007, 13, 2847-2853.	3.3	40
31	Co3O4 nanoparticles supported mesoporous carbon framework interface for glucose biosensing. Talanta, 2019, 203, 112-121.	5.5	37
32	Poly(<i>N</i> â€isopropylacrylamide) Interfaces with Dissimilar Thermoâ€responsive Behavior for Controlling Ion Permeation and Immobilization. Advanced Functional Materials, 2007, 17, 3377-3382.	14.9	36
33	Quantification of Short-Chain Chlorinated Paraffins by Deuterodechlorination Combined with Gas Chromatography–Mass Spectrometry. Environmental Science & Environmental Science & 2016, 50, 3746-3753.	10.0	36
34	Gold Nanoparticles dotted Reduction Graphene Oxide Nanocomposite Based Electrochemical Aptasensor for Selective, Rapid, Sensitive and Congener-Specific PCB77 Detection. Scientific Reports, 2017, 7, 5191.	3.3	36
35	Destruction of Polychlorinated Aromatic Compounds by Spinel-Type Complex Oxides. Environmental Science & Environmental Science	10.0	35
36	Tyrosinase nanocapsule based nano-biosensor for ultrasensitive and rapid detection of bisphenol A with excellent stability in different application scenarios. Biosensors and Bioelectronics, 2020, 165, 112407.	10.1	35

#	Article	IF	Citations
37	Electrochemical DNA biosensor for screening of chlorinated benzene pollutants. Biosensors and Bioelectronics, 2011, 26, 4040-4045.	10.1	34
38	Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China. Environmental Pollution, 2016, 216, 893-901.	7.5	33
39	Bioaccumulation and human health implications of essential and toxic metals in freshwater products of Northeast China. Science of the Total Environment, 2019, 673, 768-776.	8.0	33
40	Nitrogen-Doped Graphdiyne as a Robust Electrochemical Biosensing Platform for Ultrasensitive Detection of Environmental Pollutants. Analytical Chemistry, 2021, 93, 8656-8662.	6.5	33
41	A novel electrochemical PCB77-binding DNA aptamer biosensor for selective detection of PCB77. Journal of Electroanalytical Chemistry, 2016, 771, 45-49.	3.8	31
42	Bioaccumulation and human health risks of OCPs and PCBs in freshwater products of Northeast China. Environmental Pollution, 2018, 242, 1527-1534.	7.5	30
43	Polychlorinated dibenzo-p-dioxins and dibenzofurans in soils and sediments from Daliao River Basin, China. Chemosphere, 2008, 73, 1640-1648.	8.2	28
44	Amino Acid Ionic Liquid Modified Mesoporous Carbon: A Tailorâ€made Nanostructure Biosensing Platform. ChemSusChem, 2012, 5, 1918-1925.	6.8	27
45	Enrichment of polycyclic aromatic hydrocarbons in seawater with magnesium oxide microspheres as a solid-phase extraction sorbent. Analytica Chimica Acta, 2010, 678, 183-188.	5.4	23
46	Reduced Graphene Oxide-Gold Nanoparticle Nanoframework as a Highly Selective Separation Material for Aflatoxins. Scientific Reports, 2017, 7, 14484.	3.3	22
47	Direct Electrochemical Tyrosinase Biosensor based on Mesoporous Carbon and Co ₃ O ₄ Nanorods for the Rapid Detection of Phenolic Pollutants. ChemElectroChem, 2014, 1, 808-816.	3.4	21
48	Irrigation-induced pollution of organochlorine pesticides and polychlorinated biphenyls in paddy field ecosystem of Liaohe River Plain, China. Science Bulletin, 2013, 58, 1751-1759.	1.7	20
49	Ammonium hydroxide enhancing electrospray response and boosting sensitivity of bisphenol A and its analogs. Talanta, 2018, 182, 590-594.	5.5	18
50	Quantification of Cl-PAHs and their parent compounds in fish by improved ASE method and stable isotope dilution GC-MS. Ecotoxicology and Environmental Safety, 2019, 186, 109775.	6.0	18
51	Ultrathin graphdiyne nanosheets confining Cu quantum dots as robust electrocatalyst for biosensing featuring remarkably enhanced activity and stability. Biosensors and Bioelectronics, 2022, 205, 114111.	10.1	15
52	Surface modification of spherical magnesium oxide with ethylene glycol. Materials Letters, 2009, 63, 1514-1516.	2.6	13
53	Levels and patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in foodstuffs of animal origin from Chinese markets and implications of dietary exposure. Environmental Pollution, 2021, 273, 116344.	7.5	13
54	Accumulation characteristics and estimated dietary intakes of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in plant-origin foodstuffs from Chinese markets. Science of the Total Environment, 2021, 775, 145830.	8.0	12

XIANBO LU

#	Article	IF	CITATIONS
55	The selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene by solid-phase extraction with MgO microspheres as sorbents. Journal of Chromatography A, 2011, 1218, 9149-9154.	3.7	8
56	Preparation, characterization and application of octadecyl modified magnesium oxide microspheres. Analytica Chimica Acta, 2011, 693, 54-61.	5.4	6
57	An electrochemical deoxyribonucleic acid biosensor for rapid genotoxicity screening of chemicals. Analytical Methods, 2015, 7, 3347-3352.	2.7	6
58	Retention of Nonionic Organic Compounds on Thermally Treated Soils. Environmental Science & Environmental Science & Technology, 2010, 44, 3677-3682.	10.0	4