Denis A Chusov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/847268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the efficiency of the ruthenium catalysts in the reductive amination without an external hydrogen source. Journal of Catalysis, 2022, 405, 404-409.	6.2	8
2	Syngas Instead of Hydrogen Gas as a Reducing Agent─A Strategy To Improve the Selectivity and Efficiency of Organometallic Catalysts. ACS Catalysis, 2022, 12, 5145-5154.	11.2	8
3	Asymmetric cyclopropanation of electron-rich alkenes by the racemic diene rhodium catalyst: the chiral poisoning approach. Chemical Communications, 2022, 58, 6709-6712.	4.1	2
4	Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catalysis, 2022, 12, 7142-7198.	11.2	42
5	Symmetrical Tertiary Amines: Applications and Synthetic Approaches. European Journal of Organic Chemistry, 2021, 2021, 543-586.	2.4	18
6	Carbon monoxide-driven osmium catalyzed reductive amination harvesting WGSR power. Catalysis Science and Technology, 2021, 11, 4922-4930.	4.1	8
7	Phosphine ligands in the ruthenium-catalyzed reductive amination without an external hydrogen source. Journal of Organometallic Chemistry, 2021, 941, 121806.	1.8	4
8	Easy Access to Versatile Catalytic Systems for Câ^'H Activation and Reductive Amination Based on Tetrahydrofluorenyl Rhodium(III) Complexes. Chemistry - A European Journal, 2021, 27, 10903-10912.	3.3	16
9	Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into Eâ°'H Bonds. Angewandte Chemie, 2021, 133, 18860-18868.	2.0	5
10	Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into Eâ^'H Bonds. Angewandte Chemie - International Edition, 2021, 60, 18712-18720.	13.8	25
11	Reductive Aldolâ€ŧype Reactions in the Synthesis of Pharmaceuticals. Chemistry - A European Journal, 2021, 27, 15327-15360.	3.3	6
12	Straightforward Access to High-Performance Organometallic Catalysts by Fluoride Activation: Proof of Principle on Asymmetric Cyanation, Asymmetric Michael Addition, CO ₂ Addition to Epoxide, and Reductive Alkylation of Amines by Tetrahydrofuran. ACS Catalysis, 2021, 11, 13077-13084.	11.2	13
13	Frontispiece: Reductive Aldolâ€ŧype Reactions in the Synthesis of Pharmaceuticals. Chemistry - A European Journal, 2021, 27, .	3.3	0
14	Hayashi ligand-based rhodium complex in carbon monoxide and molecular hydrogen-assisted reductive amination. Mendeleev Communications, 2021, 31, 781-783.	1.6	3
15	Reductive Amidation without an External Hydrogen Source Using Rhodium on Carbon Matrix as a Catalyst. ChemCatChem, 2020, 12, 112-117.	3.7	9
16	Tris(pyrazolyl)borate rhodium complexes. Application for reductive amination and esterification of aldehydes in the presence of carbon monoxide. Journal of Organometallic Chemistry, 2020, 925, 121468.	1.8	8
17	Osmium catalysis in the reductive amination using carbon monoxide as a reducing agent. Molecular Catalysis, 2020, 498, 111260.	2.0	8
18	Direct Reductive Amination of Camphor Using Iron Pentacarbonyl as Stoichiometric Reducing Agent: Features and Limitations. European Journal of Organic Chemistry, 2020, 2020, 6289-6294.	2.4	5

DENIS A CHUSOV

#	Article	IF	CITATIONS
19	Rhodiumâ€Catalyzed Reductive Esterification Using Carbon Monoxide as a Reducing Agent. European Journal of Organic Chemistry, 2020, 2020, 4116-4121.	2.4	2
20	Redox Condensations of <i>o</i> -Nitrobenzaldehydes with Amines under Mild Conditions: Total Synthesis of the Vasicinone Family. Journal of Organic Chemistry, 2020, 85, 9347-9360.	3.2	24
21	Variability of Rhodium(III)-Catalyzed Reactions of Aromatic Oximes with Alkenes. Synlett, 2020, 31, 1117-1120.	1.8	6
22	Alkyl formates as reagents for reductive amination of carbonyl compounds. Mendeleev Communications, 2020, 30, 112-113.	1.6	7
23	A Dual Threat: Redoxâ€Activity and Electronic Structures of Wellâ€Defined Donor–Acceptor Fulleretic Covalentâ€Organic Materials. Angewandte Chemie - International Edition, 2020, 59, 6000-6006.	13.8	20
24	Fluorene Complexes of Group 9 Metals: Fluorene Effect and Application for Reductive Amination. Organometallics, 2019, 38, 3151-3158.	2.3	14
25	Aldehydes as Alkylating Agents for Ketones. Chemistry - A European Journal, 2019, 25, 16225-16229.	3.3	9
26	Oneâ€Pot Synthesis of Symmetrical Tertiary and Secondary Amines from Carbonyl Compounds, Ammonium Carbonate and Carbon Monoxide as a Reductant. European Journal of Organic Chemistry, 2019, 2019, 6557-6560.	2.4	4
27	Reductive Amination in the Synthesis of Pharmaceuticals. Chemical Reviews, 2019, 119, 11857-11911.	47.7	423
28	Anthracene–rhodium complexes with metal coordination at the central ring – a new class of catalysts for reductive amination. Organic and Biomolecular Chemistry, 2019, 17, 83-87.	2.8	9
29	Hitchhiker's Guide to Reductive Amination. Synthesis, 2019, 51, 2667-2677.	2.3	64
30	Reduction of phosphine oxides to phosphines. Tetrahedron Letters, 2019, 60, 575-582.	1.4	28
31	Synthesis of Nitriles from Aldehydes with Elongation of the Molecule with Two Carbon Atoms. European Journal of Organic Chemistry, 2019, 2019, 32-35.	2.4	5
32	A Planar hiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones. Angewandte Chemie - International Edition, 2018, 57, 7714-7718.	13.8	174
33	A Planar hiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones. Angewandte Chemie, 2018, 130, 7840-7844.	2.0	70
34	Carbon monoxide as a selective reducing agent in organic chemistry. Mendeleev Communications, 2018, 28, 113-122.	1.6	33
35	Rutheniumâ€Catalyzed Reductive Amidation without an External Hydrogen Source. European Journal of Organic Chemistry, 2018, 2018, 557-563.	2.4	10
36	Indenyl rhodium complexes. Synthesis and catalytic activity in reductive amination using carbon monoxide as a reducing agent. Journal of Organometallic Chemistry, 2018, 867, 106-112.	1.8	24

DENIS A CHUSOV

#	Article	IF	CITATIONS
37	Atom- and Step-Economical Ruthenium-Catalyzed Synthesis of Esters from Aldehydes or Ketones and Carboxylic Acids. Organic Letters, 2018, 20, 7856-7859.	4.6	11
38	Formal reductive addition of acetonitrile to aldehydes and ketones. Organic and Biomolecular Chemistry, 2018, 16, 7693-7701.	2.8	3
39	Indenyl Rhodium Complexes with Arene Ligands: Synthesis and Application for Reductive Amination. Organometallics, 2018, 37, 2553-2562.	2.3	24
40	Rücktitelbild: A Planarâ€Chiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones (Angew. Chem.) Tj ETQq0 (0 0 2gBT /C)ve ı lock 10 Tf
41	Synthesis of the cyclopentadienone rhodium complexes and investigation of their catalytic activity in the reductive aminationÂofÂaldehydes in the presence of carbon monoxide. Journal of Organometallic Chemistry, 2017, 835, 6-11.	1.8	12
42	Some Aspects of Reductive Amination in the Presence of Carbon Monoxide: Cyclopropyl Ketones as Bifunctional Electrophiles. Synthesis, 2017, 49, 2640-2651.	2.3	10
43	Synthesis of N,N′-Dialkylated Cyclohexane-1,2-diamines and Their Application as Asymmetric Ligands and Organocatalysts for the Synthesis of Alcohols. Synlett, 2017, 28, 615-619.	1.8	6
44	Dichotomy of Atom-Economical Hydrogen-Free Reductive Amidation vs Exhaustive Reductive Amination. Organic Letters, 2017, 19, 5657-5660.	4.6	16
45	Hydrogen-free reductive amination using iron pentacarbonyl as a reducing agent. Organic and Biomolecular Chemistry, 2017, 15, 10164-10166.	2.8	17
46	lridium Halide Complexes [1,1-X2 -8-SMe2 -1,2,8-IrC2 B9 H10]2 (X = Cl, Br, I): Synthesis, Reactivity and Catalytic Activity. European Journal of Inorganic Chemistry, 2017, 2017, 4635-4644.	2.0	23
47	Reductive amination catalyzed by iridium complexes using carbon monoxide as a reducing agent. Organic and Biomolecular Chemistry, 2017, 15, 6384-6387.	2.8	19
48	Cyclobutadiene Arene Complexes of Rhodium and Iridium. Organometallics, 2016, 35, 3025-3031.	2.3	26
49	Dichotomy of Reductive Addition of Amines to Cyclopropyl Ketones vs Pyrrolidine Synthesis. Organic Letters, 2016, 18, 5968-5970.	4.6	22
50	Cyclobutadiene Metal Complexes: A New Class of Highly Selective Catalysts. An Application to Direct Reductive Amination. ACS Catalysis, 2016, 6, 2043-2046.	11.2	49
51	The synthesis of sterically hindered amines by a direct reductive amination of ketones. Chemical Communications, 2016, 52, 1397-1400.	4.1	24
52	Reductive Transformations of Carbonyl Compounds Catalyzed by Rhodium Supported on a Carbon Matrix by using Carbon Monoxide as a Deoxygenative Agent. ChemCatChem, 2015, 7, 2590-2593.	3.7	19
53	Ruthenium-Catalyzed Reductive Amination without an External Hydrogen Source. Organic Letters, 2015, 17, 173-175.	4.6	54
54	Reductive Amination without an External Hydrogen Source. Angewandte Chemie - International Edition, 2014, 53, 5199-5201.	13.8	102

DENIS A CHUSOV

#	Article	IF	CITATIONS
55	Atom- and Step-Economical Preparation of Reduced Knoevenagel Adducts Using CO as a Deoxygenative Agent. Organic Letters, 2014, 16, 5068-5071.	4.6	24
56	Asymmetric ring opening of epoxides with cyanides catalysed by chiral binuclear titanium complexes. Tetrahedron: Asymmetry, 2014, 25, 838-843.	1.8	11
57	Aza-Diels–Alder reaction catalyzed by novel chiral metalocomplex BrÃ,nsted acids. Tetrahedron: Asymmetry, 2013, 24, 178-183.	1.8	29
58	Asymmetric <i>meso</i> â€Epoxide Ringâ€Opening with Trimethylsilyl Cyanide Promoted by Chiral Binuclear Complexes of Titanium. Dichotomy of CC versus CN Bond Formation. Advanced Synthesis and Catalysis, 2009, 351, 3157-3167.	4.3	30
59	Synthesis of chiral polydentate ligands and the use of their titanium complexes as pre-catalysts for the asymmetric trimethylsilylcyanation of benzaldehyde. Russian Chemical Bulletin, 2008, 57, 1981-1988.	1.5	11
60	Chiral Ti(IV) complexes of hexadentate Schiff bases as precatalysts for aldehyde allylation: unusual additive effect of trimethylsilyl chloride. Tetrahedron: Asymmetry, 2008, 19, 459-466.	1.8	22
61	Chiral Ti(IV) complexes of hexadentate Schiff bases as precatalysts for the asymmetric addition of TMSCN to aldehydes and the ring opening of cyclohexene oxide. Tetrahedron: Asymmetry, 2006, 17, 2328-2333	1.8	29