
Marlene Ägerstrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Science of the Total Environment, 2017, 576, 720-737.	3.9	255
2	CRED: Criteria for reporting and evaluating ecotoxicity data. Environmental Toxicology and Chemistry, 2016, 35, 1297-1309.	2.2	216
3	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
4	Improving Environmental Risk Assessment of Human Pharmaceuticals. Environmental Science & Technology, 2015, 49, 5336-5345.	4.6	141
5	The Role of Behavioral Ecotoxicology in Environmental Protection. Environmental Science & Technology, 2021, 55, 5620-5628.	4.6	101
6	A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals. Environmental Health, 2016, 15, 74.	1.7	92
7	Implementing systematic review techniques in chemical risk assessment: Challenges, opportunities and recommendations. Environment International, 2016, 92-93, 556-564.	4.8	67
8	How we can make ecotoxicology more valuable to environmental protection. Science of the Total Environment, 2017, 578, 228-235.	3.9	60
9	Emerging investigator series: use of behavioural endpoints in the regulation of chemicals. Environmental Sciences: Processes and Impacts, 2020, 22, 49-65.	1.7	52
10	Evaluation of the accuracy and consistency of the Swedish Environmental Classification and Information System for pharmaceuticals. Science of the Total Environment, 2010, 408, 2327-2339.	3.9	51
11	Comparison of four different methods for reliability evaluation of ecotoxicity data: a case study of non-standard test data used in environmental risk assessments of pharmaceutical substances. Environmental Sciences Europe, 2011, 23, 17.	11.0	48
12	Assessing the relevance of ecotoxicological studies for regulatory decision making. Integrated Environmental Assessment and Management, 2017, 13, 652-663.	1.6	47
13	The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate!. Environmental Sciences Europe, 2020, 32, .	2.6	46
14	NanoCRED: A transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials – Relevance and reliability revisited. NanoImpact, 2017, 6, 81-89.	2.4	45
15	WikiPharma – A freely available, easily accessible, interactive and comprehensive database for environmental effect data for pharmaceuticals. Regulatory Toxicology and Pharmacology, 2009, 55, 367-371.	1.3	44
16	Reporting and evaluation criteria as means towards a transparent use of ecotoxicity data for environmental risk assessment of pharmaceuticals. Environmental Pollution, 2011, 159, 2487-2492.	3.7	43
17	Criteria for Reporting and Evaluating ecotoxicity Data (CRED): comparison and perception of the Klimisch and CRED methods for evaluating reliability and relevance of ecotoxicity studies. Environmental Sciences Europe, 2016, 28, 7.	2.6	42
18	Uppsala Consensus Statement on Environmental Contaminants and the Global Obesity Epidemic. Environmental Health Perspectives, 2016, 124, A81-3.	2.8	39

#	Article	IF	CITATIONS
19	Bad Reporting or Bad Science? Systematic Data Evaluation as a Means to Improve the Use of Peer-Reviewed Studies in Risk Assessments of Chemicals. Human and Ecological Risk Assessment (HERA), 2014, 20, 1427-1445.	1.7	37
20	Weight of evidence evaluation and systematic review in EU chemical risk assessment: Foundation is laid but guidance is needed. Environment International, 2016, 92-93, 590-596.	4.8	36
21	Science in Risk Assessment and Policy (SciRAP): An Online Resource for Evaluating and Reporting <i>In Vivo</i> (Eco)Toxicity Studies. Human and Ecological Risk Assessment (HERA), 2015, 21, 753-762.	1.7	33
22	Making the most of expert judgment in hazard and risk assessment of chemicals. Toxicology Research, 2017, 6, 571-577.	0.9	29
23	The Essential Elements of a Risk Governance Framework for Current and Future Nanotechnologies. Risk Analysis, 2018, 38, 1321-1331.	1.5	27
24	Study sensitivity: Evaluating the ability to detect effects in systematic reviews of chemical exposures. Environment International, 2016, 92-93, 605-610.	4.8	24
25	Improving environmental risk assessments of chemicals: Steps towards evidence-based ecotoxicology. Environment International, 2019, 128, 210-217.	4.8	24
26	The Swedish Environmental Classification and Information System for Pharmaceuticals — An empirical investigation of the motivations, intentions and expectations underlying its development and implementation. Environment International, 2009, 35, 778-786.	4.8	19
27	Transparency of chemical risk assessment data under REACH. Environmental Sciences: Processes and Impacts, 2016, 18, 1508-1518.	1.7	18
28	An academic researcher's guide to increased impact on regulatory assessment of chemicals. Environmental Sciences: Processes and Impacts, 2017, 19, 644-655.	1.7	18
29	Reliability and relevance evaluations of REACH data. Toxicology Research, 2019, 8, 46-56.	0.9	17
30	A call for action: Improve reporting of research studies to increase the scientific basis for regulatory decisionâ€making. Journal of Applied Toxicology, 2018, 38, 783-785.	1.4	15
31	Improving structure and transparency in reliability evaluations of data under REACH: suggestions for a systematic method. Human and Ecological Risk Assessment (HERA), 2020, 26, 212-241.	1.7	10
32	Pharmaceuticals and Environment: a web-based decision support for considering environmental aspects of medicines in use. European Journal of Clinical Pharmacology, 2020, 76, 1151-1160.	0.8	10
33	Combining web-based tools for transparent evaluation of data for risk assessment: developmental effects of bisphenol A on the mammary gland as a case study. Journal of Applied Toxicology, 2017, 37, 319-330.	1.4	9
34	Refining tools to bridge the gap between academia and chemical regulation: perspectives for WikiREACH. Environmental Sciences: Processes and Impacts, 2017, 19, 1466-1473.	1.7	5
35	Toxicity studies used in registration, evaluation, authorisation and restriction of chemicals (REACH): How accurately are they reported?. Integrated Environmental Assessment and Management, 2019, 15, 458-469.	1.6	5
36	In Response : Reporting recommendations to ensure reliability and reproducibility of ecotoxicity studies—A tripartite initiative. Environmental Toxicology and Chemistry, 2016, 35, 1072-1073.	2.2	2

#	Article	IF	CITATIONS
37	Reporting and Evaluating Ecotoxicity Data for Environmental Risk Assessment. Comprehensive Analytical Chemistry, 2013, , 685-704.	0.7	1
38	A characterization of dose–response relationships for developmental effects of bisphenol A (BPA) in the low dose range. Toxicology Letters, 2015, 238, S128.	0.4	0
39	A proposal for systematic review and assessment of endocrine disruption. Toxicology Letters, 2015, 238, S42.	0.4	0
40	Better reporting of science to improve regulatory decision-making. Elni Review, 2020, , 12-15.	0.1	0