Keita Tamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472421/publications.pdf Version: 2024-02-01

Κειτλ Τλλαιισλ

#	Article	IF	CITATIONS
1	Learning-related congruent and incongruent changes of excitation and inhibition in distinct cortical areas. PLoS Biology, 2022, 20, e3001667.	5.6	6
2	Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron, 2021, 109, 2183-2201.e9.	8.1	46
3	Off-Peak 594-nm Light Surpasses On-Peak 532-nm Light in Silencing Distant ArchT-Expressing Neurons InÂVivo. IScience, 2020, 23, 101276.	4.1	7
4	Cortical circuits for transforming whisker sensation into goal-directed licking. Current Opinion in Neurobiology, 2020, 65, 38-48.	4.2	13
5	Distinct Contributions of Whisker Sensory Cortex and Tongue-Jaw Motor Cortex in a Goal-Directed Sensorimotor Transformation. Neuron, 2019, 103, 1034-1043.e5.	8.1	62
6	Causal neural network of metamemory for retrospection in primates. Science, 2017, 355, 188-193.	12.6	86
7	Conversion of object identity to object-general semantic value in the primate temporal cortex. Science, 2017, 357, 687-692.	12.6	45
8	Cofilin1 Controls Transcolumnar Plasticity in Dendritic Spines in Adult Barrel Cortex. PLoS Biology, 2015, 13, e1002070.	5.6	4
9	Distinct Neuronal Interactions in Anterior Inferotemporal Areas of Macaque Monkeys during Retrieval of Object Association Memory. Journal of Neuroscience, 2014, 34, 9377-9388.	3.6	14
10	A design strategy for small molecule-based targeted MRI contrast agents: their application for detection of atherosclerotic plaques. Organic and Biomolecular Chemistry, 2014, 12, 8611-8618.	2.8	13
11	Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions. Behavioural Brain Research, 2013, 255, 26-34.	2.2	13
12	Functional Microcircuit Recruited during Retrieval of Object Association Memory in Monkey Perirhinal Cortex. Neuron, 2013, 77, 192-203.	8.1	42
13	Microcircuits for Hierarchical Elaboration of Object Coding Across Primate Temporal Areas. Science, 2013, 341, 191-195.	12.6	47
14	Neurodynamics of Cognitive Set Shifting in Monkey Frontal Cortex and Its Causal Impact on Behavioral Flexibility. Journal of Cognitive Neuroscience, 2012, 24, 2171-2185.	2.3	21
15	Optogenetic inhibition of Purkinje cell activity reveals cerebellar control of blood pressure during postural alterations in anesthetized rats. Neuroscience, 2012, 210, 137-144.	2.3	17
16	A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. Journal of Neuroscience Methods, 2012, 211, 49-57.	2.5	67
17	fMRI Activity in the Macaque Cerebellum Evoked by Intracortical Microstimulation of the Primary Somatosensory Cortex: Evidence for Polysynaptic Propagation. PLoS ONE, 2012, 7, e47515.	2.5	26
18	Reversal of Interlaminar Signal Between Sensory and Memory Processing in Monkey Temporal Cortex. Science, 2011, 331, 1443-1447.	12.6	125

Keita Tamura

#	Article	IF	CITATIONS
19	Development of an optogenetic method for in vivo manipulation of cerebellar Purkinje cell activity. Neuroscience Research, 2011, 71, e311.	1.9	0
20	Method for Enhancing Cell Penetration of Gd3+-based MRI Contrast Agents by Conjugation with Hydrophobic Fluorescent Dyes. Bioconjugate Chemistry, 2011, 22, 2227-2236.	3.6	37
21	Sensory and mnemonic demands flexibly recruit interlaminar microcircuits in macaque temporal cortex. Neuroscience Research, 2011, 71, e70.	1.9	0
22	A bicistronic lentiviral vector-based method for differential transsynaptic tracing of neural circuits. Molecular and Cellular Neurosciences, 2011, 46, 136-147.	2.2	19
23	Optogenetic Manipulation of Cerebellar Purkinje Cell Activity In Vivo. PLoS ONE, 2011, 6, e22400.	2.5	33
24	Direct Comparison of Spontaneous Functional Connectivity and Effective Connectivity Measured by Intracortical Microstimulation: An fMRI Study in Macaque Monkeys. Cerebral Cortex, 2011, 21, 2348-2356.	2.9	80
25	Triphasic Dynamics of Stimulus-Dependent Information Flow between Single Neurons in Macaque Inferior Temporal Cortex. Journal of Neuroscience, 2010, 30, 10407-10421.	3.6	18