List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8471998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TransCom 3 CO ₂ inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 555.	0.8	105
2	Effect of recent observations on Asian CO ₂ flux estimates by transport model inversions. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 522.	0.8	16
3	TransCom 3 CO ₂ inversion intercomparison: 2. Sensitivity of annual mean results to data choices. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 580.	0.8	20
4	Oceanic and Atmospheric Drivers of Postâ€Elâ€Niño Chlorophyll Rebound in the Equatorial Pacific. Geophysical Research Letters, 2022, 49, .	1.5	5
5	Regional sensitivity patterns of Arctic Ocean acidification revealed with machine learning. Communications Earth & Environment, 2022, 3, .	2.6	2
6	Marine Ecosystem Changepoints Spread Under Ocean Warming in an Earth System Model. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	1
7	Mixed Layer Depth Promotes Trophic Amplification on a Seasonal Scale. Geophysical Research Letters, 2022, 49, .	1.5	2
8	Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change, 2021, 11, 207-212.	8.1	108
9	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	2.7	236
10	An Atmospheric Constraint on the Seasonal Airâ€5ea Exchange of Oxygen and Heat in the Extratropics. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017510.	1.0	2
11	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	8.1	96
12	Simple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002008.	1.3	24
13	The GFDL Global Atmospheric Chemistryâ€Climate Model AM4.1: Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002032.	1.3	51
14	Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO ₂ . Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002043.	1.3	70
15	Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6. Current Climate Change Reports, 2020, 6, 95-119.	2.8	155
16	The GFDL Earth System Model Version 4.1 (GFDLâ€ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002015.	1.3	277
17	Ocean Ammonia Outgassing: Modulation by CO ₂ and Anthropogenic Nitrogen Deposition. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002026.	1.3	5
18	Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 2020, 17, 3439-3470.	1.3	348

#	Article	IF	CITATIONS
19	Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.	1.9	105
20	Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.	1.9	30
21	Increase in ocean acidity variability and extremes under increasing atmospheric CO ₂ . Biogeosciences, 2020, 17, 4633-4662.	1.3	52
22	The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. Journal of Advances in Modeling Earth Systems, 2019, 11, 3167-3211.	1.3	195
23	Structure and Performance of GFDL's CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 3691-3727.	1.3	242
24	Seasonal to interannual predictability of oceanic net primary production inferred from satellite observations. Progress in Oceanography, 2019, 170, 28-39.	1.5	26
25	Surface winds from atmospheric reanalysis lead to contrasting oceanic forcing and coastal upwelling patterns. Ocean Modelling, 2019, 133, 79-111.	1.0	20
26	Modeling Global Ocean Biogeochemistry With Physical Data Assimilation: A Pragmatic Solution to the Equatorial Instability. Journal of Advances in Modeling Earth Systems, 2018, 10, 891-906.	1.3	35
27	Climate, ocean circulation, and sea level changes under stabilization and overshoot pathways to 1.5 K warming. Earth System Dynamics, 2018, 9, 817-828.	2.7	26
28	Glacial Iron Sources Stimulate the Southern Ocean Carbon Cycle. Geophysical Research Letters, 2018, 45, 13,377.	1.5	27
29	Response of O ₂ and pH to ENSO in the California Current System in a high-resolution global climate model. Ocean Science, 2018, 14, 69-86.	1.3	23
30	Reconciling fisheries catch and ocean productivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1441-E1449.	3.3	195
31	Rapid emergence of climate change in environmental drivers of marine ecosystems. Nature Communications, 2017, 8, 14682.	5.8	216
32	Temperature and oxygen dependence of the remineralization of organic matter. Global Biogeochemical Cycles, 2017, 31, 1038-1050.	1.9	86
33	Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 2017, 10, 2169-2199.	1.3	137
34	C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 2853-2880.	1.3	186
35	Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences, 2016, 13, 4023-4047.	1.3	106
36	Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models. Journal of Geophysical Research: Oceans, 2016, 121, 8635-8669.	1.0	34

#	Article	IF	CITATIONS
37	On the Southern Ocean CO ₂ uptake and the role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 2015, 29, 1451-1470.	1.9	85
38	A more productive, but different, ocean after mitigation. Geophysical Research Letters, 2015, 42, 9836-9845.	1.5	22
39	Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 2015, 12, 6955-6984.	1.3	252
40	Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 2014, 11, 7125-7135.	1.3	86
41	Global-scale carbon and energy flows through the marine planktonic food web: An analysis with a coupled physical–biological model. Progress in Oceanography, 2014, 120, 1-28.	1.5	183
42	Near-term Climate Change: Projections and Predictability. , 2014, , 953-1028.		196
43	Climate System Scenario Tables. , 2014, , 1395-1446.		25
44	Reductions in labour capacity from heat stress under climate warming. Nature Climate Change, 2013, 3, 563-566.	8.1	407
45	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics*. Journal of Climate, 2013, 26, 2247-2267.	1.2	540
46	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 2012, 25, 6646-6665.	1.2	972
47	Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860–2100. Atmospheric Chemistry and Physics, 2012, 12, 12021-12036.	1.9	54
48	Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model. Biogeosciences, 2012, 9, 1159-1172.	1.3	62
49	What ocean biogeochemical models can tell us about bottom-up control of ecosystem variability. ICES Journal of Marine Science, 2011, 68, 1030-1044.	1.2	24
50	Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 2010, 7, 621-640.	1.3	360
51	TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2fluxes, 1988-2003. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	417
52	Sensitivity of inverse estimation of annual mean CO2sources and sinks to ocean-only sites versus all-sites observational networks. Geophysical Research Letters, 2006, 33, .	1.5	40
53	Natural Variability in a Stable, 1000-Yr Global Coupled Climate–Carbon Cycle Simulation. Journal of Climate, 2006, 19, 3033-3054.	1.2	199
54	Terrestrial biogeochemistry in the community climate system model (CCSM). Journal of Physics: Conference Series, 2006, 46, 363-369.	0.3	1

#	Article	IF	CITATIONS
55	Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 2006, 19, 3337-3353.	1.2	2,647
56	TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2fluxes, 1988-2003. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	2
57	Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11201-11206.	3.3	318
58	Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	312
59	On the detection of summertime terrestrial photosynthetic variability from its atmospheric signature. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	3
60	TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 555-579.	0.8	235
61	Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 2002, 415, 626-630.	13.7	1,157
62	The climate of North America and adjacent ocean waters ca. 6 ka. Canadian Journal of Earth Sciences, 2000, 37, 661-681.	0.6	53
63	Iron supply and demand in the upper ocean. Global Biogeochemical Cycles, 2000, 14, 281-295.	1.9	472
64	Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochemical Cycles, 1997, 11, 507-533.	1.9	206
65	Carbon-biosphere-climate interactions in the last glacial maximum climate. Journal of Geophysical Research, 1995, 100, 7203-7221.	3.3	40
66	On the contribution of CO2fertilization to the missing biospheric sink. Global Biogeochemical Cycles, 1995, 9, 541-556.	1.9	191
67	Global analysis of the potential for N ₂ O production in natural soils. Global Biogeochemical Cycles, 1993, 7, 557-597.	1.9	195
68	Threeâ€dimensional model synthesis of the global methane cycle. Journal of Geophysical Research, 1991, 96, 13033-13065.	3.3	820