Teng Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8471996/publications.pdf Version: 2024-02-01

ΤΕΝΟ ΖΗΛΙ

#	Article	IF	CITATIONS
1	Hydrogenated TiO ₂ Nanotube Arrays for Supercapacitors. Nano Letters, 2012, 12, 1690-1696.	9.1	1,226
2	Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO ₂ Nanorods Hybrid Structure. ACS Nano, 2012, 6, 656-661.	14.6	961
3	Hâ€TiO ₂ @MnO ₂ //Hâ€TiO ₂ @C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials, 2013, 25, 267-272.	21.0	894
4	Oxygenâ€Deficient Hematite Nanorods as Highâ€Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials, 2014, 26, 3148-3155.	21.0	838
5	High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters, 2013, 13, 2628-2633.	9.1	691
6	Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters, 2014, 14, 2522-2527.	9.1	688
7	Solid‣tate Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability. Advanced Materials, 2014, 26, 2676-2682.	21.0	660
8	WO _{3–x} @Au@MnO ₂ Core–Shell Nanowires on Carbon Fabric for Highâ€Performance Flexible Supercapacitors. Advanced Materials, 2012, 24, 938-944.	21.0	641
9	Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters, 2012, 12, 5376-5381.	9.1	627
10	Phosphate Ion Functionalized Co ₃ O ₄ Ultrathin Nanosheets with Greatly Improved Surface Reactivity for High Performance Pseudocapacitors. Advanced Materials, 2017, 29, 1604167.	21.0	540
11	Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy and Environmental Science, 2011, 4, 2915.	30.8	479
12	Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports, 2013, 3, 1021.	3.3	427
13	WO _{3â^'<i>x</i>} /MoO _{3â^'<i>x</i>} Core/Shell Nanowires on Carbon Fabric as an Anode for All‧olid‧tate Asymmetric Supercapacitors. Advanced Energy Materials, 2012, 2, 1328-1332.	19.5	401
14	Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy, 2014, 8, 255-263.	16.0	381
15	LiCl/PVA Gel Electrolyte Stabilizes Vanadium Oxide Nanowire Electrodes for Pseudocapacitors. ACS Nano, 2012, 6, 10296-10302.	14.6	310
16	A New Benchmark Capacitance for Supercapacitor Anodes by Mixedâ€Valence Sulfurâ€Doped V ₆ O _{13â^'<i>x</i>} . Advanced Materials, 2014, 26, 5869-5875.	21.0	305
17	Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Materials, 2014, 6, e129-e129.	7.9	284
18	3D MnO2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale, 2013, 5, 6790.	5.6	258

TENG ZHAI

#	Article	IF	CITATIONS
19	Hierarchical Fe ₃ O ₄ @Fe ₂ O ₃ Core–Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 27518-27525.	8.0	256
20	Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy, 2018, 45, 390-397.	16.0	233
21	Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale, 2012, 4, 3123.	5.6	228
22	Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes with a Thin Carbon Shell. Advanced Energy Materials, 2014, 4, 1300994.	19.5	217
23	Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors. Journal of Materials Chemistry, 2012, 22, 13357.	6.7	207
24	Achieving Insertionâ€Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance. Advanced Materials, 2018, 30, e1706640.	21.0	202
25	TiO ₂ @C core–shell nanowires for high-performance and flexible solid-state supercapacitors. Journal of Materials Chemistry C, 2013, 1, 225-229.	5.5	192
26	Birnessite Nanosheet Arrays with High K Content as a High apacity and Ultrastable Cathode for Kâ€lon Batteries. Advanced Materials, 2019, 31, e1900060.	21.0	183
27	A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale, 2013, 5, 4129.	5.6	169
28	Yolk–Shell NiS ₂ Nanoparticleâ€Embedded Carbon Fibers forÂFlexible Fiberâ€Shaped Sodium Battery. Advanced Energy Materials, 2018, 8, 1800054.	19.5	162
29	Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10825-10829.	10.3	145
30	Three dimensional architectures: design, assembly and application in electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 15792-15823.	10.3	135
31	Acid Treatment Enables Suppression of Electron–Hole Recombination in Hematite for Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2016, 55, 3403-3407.	13.8	132
32	Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. Journal of Power Sources, 2013, 239, 64-71.	7.8	121
33	Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods. Journal of Materials Chemistry, 2011, 21, 5569.	6.7	120
34	An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. Nano Letters, 2015, 15, 3189-3194.	9.1	118
35	Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode. Journal of Power Sources, 2017, 341, 427-434.	7.8	116
36	Improving the photoelectrochemical and photocatalytic performance of CdO nanorods with CdS decoration. CrystEngComm, 2013, 15, 4212.	2.6	110

TENG ZHAI

#	Article	IF	CITATIONS
37	Carbon shelled porous SnO2-δ nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Materials, 2018, 13, 303-311.	18.0	108
38	Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting. Journal of Materials Chemistry, 2012, 22, 14272.	6.7	85
39	Controllable Synthesis of Zn _{<i>x</i>} Cd _{1–<i>x</i>} S@ZnO Core–Shell Nanorods with Enhanced Photocatalytic Activity. Langmuir, 2012, 28, 10558-10564.	3.5	83
40	Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy, 2015, 12, 169-177.	16.0	83
41	Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environmental Science and Pollution Research, 2015, 22, 10452-10462.	5.3	82
42	MnO ₂ nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification. Nanoscale Horizons, 2016, 1, 109-124.	8.0	82
43	Monodisperse CeO2/CdS heterostructured spheres: one-pot synthesis and enhanced photocatalytic hydrogen activity. RSC Advances, 2011, 1, 1207.	3.6	80
44	Fe ₃ O ₄ /reduced graphene oxide with enhanced electrochemical performance towards lithium storage. Journal of Materials Chemistry A, 2014, 2, 7214-7220.	10.3	79
45	Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. CrystEngComm, 2012, 14, 1850.	2.6	75
46	Hydrogen production from solar driven glucose oxidation over Ni(OH)2 functionalized electroreduced-TiO2 nanowire arrays. Green Chemistry, 2013, 15, 2434.	9.0	72
47	NiO decorated Mo:BiVO4 photoanode with enhanced visible-light photoelectrochemical activity. International Journal of Hydrogen Energy, 2014, 39, 4820-4827.	7.1	72
48	Synergistic Interfaceâ€Assisted Electrode–Electrolyte Coupling Toward Advanced Charge Storage. Advanced Materials, 2020, 32, e2005344.	21.0	64
49	Hierarchical CeO2 nanospheres as highly-efficient adsorbents for dye removal. New Journal of Chemistry, 2013, 37, 585.	2.8	62
50	Vertically aligned In2O3 nanorods on FTO substrates for photoelectrochemical applications. Journal of Materials Chemistry, 2011, 21, 14685.	6.7	59
51	Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solutions. Nano Letters, 2015, 15, 7051-7057.	9.1	57
52	Oxygenâ€Deficient Homoâ€Interface toward Exciting Boost of Pseudocapacitance. Advanced Functional Materials, 2020, 30, 1909546.	14.9	54
53	Porous Pr(OH) ₃ Nanostructures as High-Efficiency Adsorbents for Dye Removal. Langmuir, 2012, 28, 11078-11085.	3.5	49
54	Facile synthesis of CuO nanorods with abundant adsorbed oxygen concomitant with high surface oxidation states for CO oxidation. RSC Advances, 2012, 2, 11520.	3.6	42

TENG ZHAI

#	Article	IF	CITATIONS
55	Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting. Nano Energy, 2014, 10, 313-321.	16.0	42
56	Highly efficient sol-gel synthesis for ZnS@N, S co-doped carbon nanosheets with embedded heterostructure for sodium ion batteries. Journal of Power Sources, 2018, 402, 340-344.	7.8	42
57	Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices. Journal of Materials Chemistry A, 2013, 1, 505-509.	10.3	41
58	Boosting Energy Storage via Confining Soluble Redox Species onto Solid–Liquid Interface. Advanced Energy Materials, 2021, 11, 2003599.	19.5	35
59	Large-area manganese oxide nanorod arrays as efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2012, 37, 13350-13354.	7.1	28
60	Preparation and Magnetic Properties of Polycrystalline Eu ₂ O ₃ Microwires. Journal of the Electrochemical Society, 2012, 159, D204-D207.	2.9	27
61	Acid Treatment Enables Suppression of Electron–Hole Recombination in Hematite for Photoelectrochemical Water Splitting. Angewandte Chemie, 2016, 128, 3464-3468.	2.0	27
62	Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs. Materials Research Bulletin, 2012, 47, 580-585.	5.2	26
63	Manganese-based layered oxides for electrochemical energy storage: a review of degradation mechanisms and engineering strategies at the atomic level. Journal of Materials Chemistry A, 2022, 10, 19231-19253.	10.3	14
64	Regulating the π-π interaction with shortened electron tunneling distance for efficient charge storage. Energy Storage Materials, 2022, 48, 403-411.	18.0	13
65	Harnessing the Defects at Heteroâ€Interface of Transition Metal Compounds for Advanced Charge Storage: A Review. Small Structures, 2022, 3, .	12.0	11
66	Facile synthesis of Pr(OH)3 nanostructures and their application in water treatment. Materials Research Bulletin, 2012, 47, 1783-1786.	5.2	9
67	Two novel fan-shaped trinuclear Pt(ii) complexes act as G-quadruplex binders and telomerase inhibitors. Dalton Transactions, 2020, 49, 9322-9329.	3.3	9
68	Three-Dimensional Carbon-Supported MoS2 With Sulfur Defects as Oxygen Electrodes for Li-O2 Batteries. Frontiers in Energy Research, 2020, 8, .	2.3	9
69	Recent advances in coupling carbon-based electrode—Redox electrolyte system. Materials Research Bulletin, 2021, 139, 111249.	5.2	9
70	Novel Gramâ€Scale Synthesis of Carbon Nanoâ€Onions from Heavy Oil for Supercapacitors. Advanced Materials Interfaces, 2021, 8, 2101208.	3.7	9
71	Efficient electroless nickel plating from highly active Ni–B nanoparticles for electric circuit patterns on Al2O3 ceramics. Journal of Materials Chemistry C, 2013, 1, 5149.	5.5	6
72	Multiscale porous graphene oxide network with high packing density for asymmetric supercapacitors. Journal of Materials Research, 2018, 33, 1155-1166.	2.6	4

Teng Zhai

#	Article	IF	CITATIONS
73	Electrochemical preparation and photoluminescence of Y1.95Eu0.05O3 hierarchical nanosheets. Inorganic Chemistry Communication, 2011, 14, 1032-1035.	3.9	3
74	Coupling electrode-redox electrolyte within carbon nanotube arrays for supercapacitors with suppressed self-discharge. Sustainable Materials and Technologies, 2021, 28, e00284.	3.3	3
75	Functional Nanomaterials for Energy Conversion and Storage. Journal of Nanomaterials, 2016, 2016, 1-1.	2.7	2
76	Soluble Redox Species: Boosting Energy Storage via Confining Soluble Redox Species onto Solid–Liquid Interface (Adv. Energy Mater. 8/2021). Advanced Energy Materials, 2021, 11, 2170033.	19.5	1
77	Semiconductor Nanowires and Nanowire Heterostructures for Supercapacitors. , 2013, , .		0
78	Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. , 2013, , .		0
79	Editorial: Three-Dimensional Carbon Architectures for Energy Conversion and Storage. Frontiers in Energy Research, 2020, 8, .	2.3	Ο