
Karsten Kretschmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/847193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Dynamic Actin Cytoskeleton Remodeling in Foxp3+ Regulatory TÂCell Development and Function: Implications for Osteoclastogenesis. Frontiers in Immunology, 2022, 13, 836646.	4.8	1
2	Steady-state nucleosynthesis throughout the Galaxy. New Astronomy Reviews, 2021, 92, 101608.	12.8	16
3	Transient Depletion of Foxp3+ Regulatory T Cells Selectively Promotes Aggressive β Cell Autoimmunity in Genetically Susceptible DEREG Mice. Frontiers in Immunology, 2021, 12, 720133.	4.8	7
4	Foxp3+ Regulatory T Cells in Bone and Hematopoietic Homeostasis. Frontiers in Endocrinology, 2019, 10, 578.	3.5	36
5	Inducible IL-7 Hyperexpression Influences Lymphocyte Homeostasis and Function and Increases Allograft Rejection. Frontiers in Immunology, 2019, 10, 742.	4.8	7
6	RelB Deficiency in Dendritic Cells Protects from Autoimmune Inflammation Due to Spontaneous Accumulation of Tissue T Regulatory Cells. Journal of Immunology, 2019, 203, 2602-2613.	0.8	17
7	Induced B Cell Development in Adult Mice. Frontiers in Immunology, 2018, 9, 2483.	4.8	0
8	T Lymphocytes Contribute to the Control of Baseline Neural Precursor Cell Proliferation but Not the Exercise-Induced Up-Regulation of Adult Hippocampal Neurogenesis. Frontiers in Immunology, 2018, 9, 2856.	4.8	9
9	Approaches to Discriminate Naturally Induced Foxp3+ Treg cells of Intra- and Extrathymic Origin: Helios, Neuropilin-1, and Foxp3RFP/GFP. Journal of Clinical & Cellular Immunology, 2018, 09, .	1.5	2
10	INTEGRAL/SPI <i>\hat{I}^3</i> -ray line spectroscopy. Astronomy and Astrophysics, 2018, 611, A12.	5.1	41
11	Critical Role of TGF-β and IL-2 Receptor Signaling in Foxp3 Induction by an Inhibitor of DNA Methylation. Frontiers in Immunology, 2018, 9, 125.	4.8	54
12	Targeting DEC-205â^'DCIR2+ dendritic cells promotes immunological tolerance in proteolipid protein-induced experimental autoimmune encephalomyelitis. Molecular Medicine, 2018, 24, 17.	4.4	32
13	New insight into type 1 diabetes development: resolving early diabetogenic CD4+ T cell responses that precede seroconversion. Annals of Translational Medicine, 2018, 6, 58-58.	1.7	2
14	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	4.8	43
15	Affinity for self antigen selects Treg cells with distinct functional properties. Nature Immunology, 2016, 17, 1093-1101.	14.5	91
16	Distinct Roles of β-Cell Mass and Function During Type 1 Diabetes Onset and Remission. Diabetes, 2015, 64, 2148-2160.	0.6	56
17	Induced miRâ€99a expression represses <i>Mtor</i> cooperatively with miRâ€150 to promote regulatory Tâ€eell differentiation. EMBO Journal, 2015, 34, 1195-1213.	7.8	83
18	DEC205+ Dendritic Cell–Targeted Tolerogenic Vaccination Promotes Immune Tolerance in Experimental Autoimmune Arthritis. Journal of Immunology, 2015, 194, 4804-4813.	0.8	45

KARSTEN KRETSCHMER

#	Article	IF	CITATIONS
19	Continuous T Cell Receptor Signals Maintain a Functional Regulatory T Cell Pool. Immunity, 2014, 41, 722-736.	14.3	262
20	Small-Molecule RORÎ ³ t Antagonists Inhibit T Helper 17 Cell Transcriptional Network by Divergent Mechanisms. Immunity, 2014, 40, 477-489.	14.3	253
21	A Repertoire of Peptide Tags for Controlled Drug Release from Injectable Noncovalent Hydrogel. Biomacromolecules, 2014, 15, 2058-2066.	5.4	20
22	Fluorochromeâ€based definition of naturally occurring Foxp3 ⁺ regulatory T cells of intra― and extrathymic origin. European Journal of Immunology, 2014, 44, 3632-3645.	2.9	26
23	Advantages of Foxp3 ⁺ regulatory T cell depletion using DEREG mice. Immunity, Inflammation and Disease, 2014, 2, 162-165.	2.7	28
24	Myelin-specific T helper 17 cells promote adult hippocampal neurogenesis through indirect mechanisms. F1000Research, 2014, 3, 169.	1.6	25
25	Myelin-specific T helper 17 cells promote adult hippocampal neurogenesis through indirect mechanisms. F1000Research, 2014, 3, 169.	1.6	13
26	Disturbed sleep in bipolar disorder is related to an elevation of IL-6 in peripheral monocytes. Medical Hypotheses, 2013, 81, 1031-1033.	1.5	16
27	Foxp3+Regulatory T Cells in Mouse Models of Type 1 Diabetes. Journal of Diabetes Research, 2013, 2013, 1-10.	2.3	26
28	Active Demethylation of the <i>Foxp3</i> Locus Leads to the Generation of Stable Regulatory T Cells within the Thymus. Journal of Immunology, 2013, 190, 3180-3188.	0.8	228
29	Kinematics of massive star ejecta in the Milky Way as traced by ²⁶ Al. Astronomy and Astrophysics, 2013, 559, A99.	5.1	73
30	Regulatory T Cell-Based Immunotherapy. Advances in Medical Technologies and Clinical Practice Book Series, 2013, , 112-136.	0.3	3
31	Severe Developmental B Lymphopoietic Defects in Foxp3-Deficient Mice are Refractory to Adoptive Regulatory T Cell Therapy. Frontiers in Immunology, 2012, 3, 141.	4.8	22
32	Retargeting of Human Regulatory T Cells by Single-Chain Bispecific Antibodies. Journal of Immunology, 2012, 188, 1551-1558.	0.8	48
33	IL-7 Abrogates Suppressive Activity of Human CD4+CD25+FOXP3+ Regulatory T Cells and Allows Expansion of Alloreactive and Autoreactive T Cells. Journal of Immunology, 2012, 189, 5649-5658.	0.8	79
34	Vagaries of Fluorochrome Reporter Gene Expression in Foxp3+ Regulatory T Cells. PLoS ONE, 2012, 7, e41971.	2.5	15
35	Targeted Antigen Delivery to DEC-205 ⁺ Dendritic Cells for Tolerogenic Vaccination. Review of Diabetic Studies, 2012, 9, 305-318.	1.3	36
36	Identification of an immediate Foxp3â^' precursor to Foxp3+ regulatory T cells in peripheral lymphoid organs of nonmanipulated mice. Journal of Experimental Medicine, 2010, 207, 1393-1407.	8.5	69

#	Article	IF	CITATIONS
37	Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5919-5924.	7.1	204
38	Promoting tolerance to proteolipid protein-induced experimental autoimmune encephalomyelitis through targeting dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17280-17285.	7.1	66
39	Dendritic Cell-Targeted Pancreatic β-Cell Antigen Leads to Conversion of Self-Reactive CD4 ⁺ T Cells Into Regulatory T Cells and Promotes Immunotolerance in NOD Mice. Review of Diabetic Studies, 2010, 7, 47-61.	1.3	38
40	Kruppel-like Factor KLF10 Targets Transforming Growth Factor-β1 to Regulate CD4+CD25â^' T Cells and T Regulatory Cells. Journal of Biological Chemistry, 2009, 284, 24914-24924.	3.4	90
41	Retinoic acid can enhance conversion of naive into regulatory T cells independently of secreted cytokines. Journal of Experimental Medicine, 2009, 206, 2131-2139.	8.5	139
42	Induction of B-cell development in adult mice reveals the ability of bone marrow to produce B-1a cells. Blood, 2009, 114, 4960-4967.	1.4	99
43	Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance. Journal of Clinical Immunology, 2008, 28, 619-624.	3.8	65
44	DNA methylation controls <i>Foxp3</i> gene expression. European Journal of Immunology, 2008, 38, 1654-1663.	2.9	688
45	Regulatory T Cells and Antigen-Specific Tolerance. Chemical Immunology and Allergy, 2008, 94, 8-15.	1.7	8
46	FoxP3 and Regulatory T Cells. , 2008, , 17-28.		2
47	B-1a cells are imprinted by the microenvironment in spleen and peritoneum. European Journal of Immunology, 2007, 37, 1613-1620.	2.9	31
48	Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature, 2007, 445, 931-935.	27.8	644
49	Instruction of Treg commitment in peripheral T cells is suited to reverse autoimmunity. Seminars in Immunology, 2006, 18, 89-92.	5.6	28
50	Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer. Immunological Reviews, 2006, 212, 163-169.	6.0	88
51	De novo production of antigen-specific suppressor cells in vivo. Nature Protocols, 2006, 1, 653-661.	12.0	46
52	Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunology, 2005, 6, 1219-1227.	14.5	1,117
53	The Mucosal Adjuvant Macrophage-Activating Lipopeptide-2 Directly Stimulates B Lymphocytes via the TLR2 without the Need of Accessory Cells. Journal of Immunology, 2005, 174, 6308-6313.	0.8	66
54	Maintenance of Peritoneal B-1a Lymphocytes in the Absence of the Spleen. Journal of Immunology, 2004, 173, 197-204.	0.8	24

#	Article	IF	CITATIONS
55	Germline transcripts of immunoglobulin light chain variable regions are structurally diverse and differentially expressed. Molecular Immunology, 2003, 40, 509-516.	2.2	10
56	The Selection of Marginal Zone B Cells Differs from That of B-1a Cells. Journal of Immunology, 2003, 171, 6495-6501.	0.8	22
57	Antibody Repertoire and Gene Expression Profile: Implications for Different Developmental and Functional Traits of Splenic and Peritoneal B-1 Lymphocytes. Journal of Immunology, 2003, 171, 1192-1201.	0.8	31
58	Strong antigenic selection shaping the immunoglobulin heavy chain repertoire of B-1a lymphocytes in λ2315 transgenic mice. European Journal of Immunology, 2002, 32, 2317.	2.9	17