
Cristina Casals

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8471913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature, 2010, 465, 236-238.	13.7	393
2	Local amplifiers of IL-4Rα–mediated macrophage activation promote repair in lung and liver. Science, 2017, 356, 1076-1080.	6.0	163
3	Phase Transitions in Films of Lung Surfactant at the Air-Water Interface. Biophysical Journal, 1998, 74, 2983-2995.	0.2	159
4	Interactions of Hydrophobic Lung Surfactant Proteins SP-B and SP-C with Dipalmitoylphosphatidylcholine and Dipalmitoylphosphatidylglycerol Bilayers Studied by Electron Spin Resonance Spectroscopy. Biochemistry, 1995, 34, 3964-3971.	1.2	155
5	Structural Properties of Recombinant Nonrepetitive and Repetitive Parts of Major Ampullate Spidroin 1 from <i>Euprosthenops australis</i> : Implications for Fiber Formation. Biochemistry, 2008, 47, 3407-3417.	1.2	129
6	The Interplay of Lung Surfactant Proteins and Lipids Assimilates the Macrophage Clearance of Nanoparticles. PLoS ONE, 2012, 7, e40775.	1.1	123
7	The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1506-1511.	3.3	117
8	Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 690-693.	1.7	117
9	High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2325-2329.	3.3	108
10	CD6 binds to pathogen-associated molecular patterns and protects from LPS-induced septic shock. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11724-11729.	3.3	100
11	Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2550-2562.	1.4	99
12	Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Lipids and Lipid Metabolism, 1993, 1168, 261-270.	2.6	97
13	A Role for Human SPα as a Pattern Recognition Receptor. Journal of Biological Chemistry, 2005, 280, 35391-35398.	1.6	97
14	Recent advances in alveolar biology: Evolution and function of alveolar proteins. Respiratory Physiology and Neurobiology, 2010, 173, S43-S54.	0.7	86
15	The Role of Collectins and Galectins in Lung Innate Immune Defense. Frontiers in Immunology, 2018, 9, 1998.	2.2	76
16	Differential Partitioning of Pulmonary Surfactant Protein SP-A into Regions of Monolayers of Dipalmitoylphosphatidylcholine and Dipalmitoylphosphatidylcholine/Dipalmitoylphosphatidylglycerol. Biophysical Journal, 1998, 74, 1101-1109.	0.2	73
17	Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interfacial films spread from lipid-protein bilayers. European Biophysics Journal, 2000, 29, 204-213.	1.2	64
18	Lipopolysaccharide Up-Regulates MHC Class II Expression on Dendritic Cells through an AP-1 Enhancer without Affecting the Levels of CIITA. Journal of Immunology, 2007, 178, 6307-6315.	0.4	63

#	Article	IF	CITATIONS
19	A pH-Dependent Dimer Lock in Spider Silk Protein. Journal of Molecular Biology, 2010, 404, 328-336.	2.0	62
20	Depth Profiles of Pulmonary Surfactant Protein B in Phosphatidylcholine Bilayers, Studied by Fluorescence and Electron Spin Resonance Spectroscopy. Biochemistry, 1998, 37, 9488-9496.	1.2	59
21	Increase of C-Reactive Protein and Decrease of Surfactant Protein A in Surfactant after Lung Transplantation. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 43-49.	2.5	57
22	Self-Aggregation of Surfactant Protein Aâ€. Biochemistry, 2000, 39, 6529-6537.	1.2	55
23	Role of the Degree of Oligomerization in the Structure and Function of Human Surfactant Protein A. Journal of Biological Chemistry, 2005, 280, 7659-7670.	1.6	54
24	Structural and functional differences among human surfactant proteins SP-A1, SP-A2 and co-expressed SP-A1/SP-A2: role of supratrimeric oligomerization. Biochemical Journal, 2007, 406, 479-489.	1.7	53
25	Soluble defense collagens: Sweeping up immune threats. Molecular Immunology, 2019, 112, 291-304.	1.0	52
26	Different modes of interaction of pulmonary surfactant protein SP-B in phosphatidylcholine bilayers. Biochemical Journal, 1997, 327, 133-138.	1.7	49
27	Conformational flexibility of pulmonary surfactant proteins SP-B and SP-C, studied in aqueous organic solvents. Lipids and Lipid Metabolism, 1995, 1255, 68-76.	2.6	46
28	Comparison of lipid aggregation and self-aggregation activities of pulmonary surfactant-associated protein A. Biochemical Journal, 1996, 313, 683-689.	1.7	44
29	IFN-γ–mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation. Blood, 2008, 112, 3274-3282.	0.6	44
30	Surfactant Protein A Prevents IFN-γ/IFN-γ Receptor Interaction and Attenuates Classical Activation of Human Alveolar Macrophages. Journal of Immunology, 2016, 197, 590-598.	0.4	44
31	Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4. FEBS Journal, 2006, 273, 2515-2527.	2.2	41
32	EFFECT OF SURFACTANT PROTEIN A (SP-A) ON THE PRODUCTION OF CYTOKINES BY HUMAN PULMONARY MACROPHAGES. Shock, 2000, 14, 300-306.	1.0	39
33	Interaction of SP-A (surfactant protein A) with bacterial rough lipopolysaccharide (Re-LPS), and effects of SP-A on the binding of Re-LPS to CD14 and LPS-binding protein. Biochemical Journal, 2005, 391, 115-124.	1.7	39
34	Bacterial Lipopolysaccharide Promotes Destabilization of Lung Surfactant-Like Films. Biophysical Journal, 2011, 100, 108-116.	0.2	35
35	Natural Anti-Infective Pulmonary Proteins: In Vivo Cooperative Action of Surfactant Protein SP-A and the Lung Antimicrobial Peptide SP-BN. Journal of Immunology, 2015, 195, 1628-1636.	0.4	35
36	Comparison between intra- and extracellular surfactant in respiratory distress induced by oleic acid. Lipids and Lipid Metabolism, 1989, 1003, 201-203.	2.6	32

#	Article	IF	CITATIONS
37	Effect of Acidic pH on the Structure and Lipid Binding Properties of Porcine Surfactant Protein A. Journal of Biological Chemistry, 1998, 273, 15183-15191.	1.6	32
38	Pulmonary Surfactant Protein A Interacts with Gel-Like Regions in Monolayers of Pulmonary Surfactant Lipid Extract. Biophysical Journal, 2000, 79, 2657-2666.	0.2	32
39	Characterization of Liposomal Tacrolimus in Lung Surfactant-like Phospholipids and Evaluation of Its Immunosuppressive Activityâ€. Biochemistry, 2004, 43, 9926-9938.	1.2	32
40	Prophylaxis with nebulized liposomal amphotericin B for Aspergillus infection in lung transplant patients does not cause changes in the lipid content of pulmonary surfactant. Journal of Heart and Lung Transplantation, 2013, 32, 313-319.	0.3	32
41	Role of Surfactant Protein a (SP-A)/Lipid Interactions for SP-A Functions in the Lung. Fetal and Pediatric Pathology, 2001, 20, 249-268.	0.3	31
42	Effect of Hydroxylation and N187-Linked Glycosylation on Molecular and Functional Properties of Recombinant Human Surfactant Protein Aâ€. Biochemistry, 2003, 42, 9532-9542.	1.2	31
43	Fluidizing effects of Câ€reactive protein on lung surfactant membranes: protective role of surfactant protein A. FASEB Journal, 2010, 24, 3662-3673.	0.2	31
44	Lysolecithin:Lysolecithin acyltransferase from rabbit lung: Enzymatic properties and kinetic study. Archives of Biochemistry and Biophysics, 1982, 217, 422-433.	1.4	28
45	Surfactant Protein A Forms Extensive Lattice-Like Structures on 1,2-Dipalmitoylphosphatidylcholine/Rough-Lipopolysaccharide- Mixed Monolayers. Biophysical Journal, 2007, 93, 3529-3540.	0.2	28
46	SP-A Permeabilizes Lipopolysaccharide Membranes by Forming Protein Aggregates that Extract Lipids from the Membrane. Biophysical Journal, 2008, 95, 3287-3294.	0.2	27
47	Surfactant strengthens the inhibitory effect of C-reactive protein on human lung macrophage cytokine release. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L466-L472.	1.3	25
48	Pulmonary Surfactant Protein A-Mediated Enrichment of Surface-Decorated Polymeric Nanoparticles in Alveolar Macrophages. Molecular Pharmaceutics, 2016, 13, 4168-4178.	2.3	25
49	Effect of Surfactant Protein A on the Physical Properties and Surface Activity of KL4-Surfactant. Biophysical Journal, 2007, 92, 482-492.	0.2	24
50	Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B–SP-C interactions in phospholipid bilayers. Biochemical Journal, 2001, 359, 651-659.	1.7	22
51	Differential Scanning Calorimetry of Protein–Lipid Interactions. Methods in Molecular Biology, 2013, 974, 55-71.	0.4	22
52	Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens. Frontiers in Microbiology, 2017, 8, 276.	1.5	22
53	Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 129, 129-139.	0.8	21
54	A Metabolomic Approach to the Pathogenesis of Ventilator-induced Lung Injury. Anesthesiology, 2014, 120, 694-702.	1.3	21

#	Article	IF	CITATIONS
55	Câ€ŧerminal, endoplasmic reticulum″umenal domain of prosurfactant protein C – structural features and membrane interactions. FEBS Journal, 2008, 275, 536-547.	2.2	20
56	Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B‒SP-C interactions in phospholipid bilayers. Biochemical Journal, 2001, 359, 651.	1.7	18
57	Lung Surfactant Lipids Provide Immune Protection Against Haemophilus influenzae Respiratory Infection. Frontiers in Immunology, 2019, 10, 458.	2.2	18
58	Membrane regulation of liver and lung microsomes under low oxygen tension. Biochemical and Biophysical Research Communications, 1985, 126, 551-558.	1.0	16
59	Effect of pH on the interfacial adsorption activity of pulmonary surfactant. Colloids and Surfaces B: Biointerfaces, 1996, 5, 271-277.	2.5	16
60	Selective Labeling of Pulmonary Surfactant Protein SP-C in Organic Solution. Analytical Biochemistry, 2001, 296, 49-56.	1.1	16
61	Targeting of Key Pathogenic Factors From Gram-Positive Bacteria by the Soluble Ectodomain of the Scavenger-Like Lymphocyte Receptor CD6. Journal of Infectious Diseases, 2014, 209, 1077-1086.	1.9	16
62	Interactions of Pulmonary Surfactant Protein A with Phospholipid Monolayers Change with pH. Biophysical Journal, 1999, 77, 1469-1476.	0.2	15
63	Beneficial effects of synthetic KL4 surfactant in experimental lung transplantation. European Respiratory Journal, 2011, 37, 925-932.	3.1	15
64	Effect of lipids on activity and conformation of lysolecithin:lysolecithin acyltransferase from rabbit lung. Molecular and Cellular Biochemistry, 1984, 63, 13-20.	1.4	13
65	Lipid alterations in liver and kidney induced by normobaric hyperoxia: Correlations with changes in microsomal membrane fluidity. Biochemical Medicine and Metabolic Biology, 1987, 37, 269-281.	0.7	13
66	Lysolecithin:lysolecithin acyltransferase from rabbit lung International Journal of Peptide and Protein Research, 1984, 23, 487-493.	0.1	12
67	Association of changes in lysophosphatidylcholine metabolism and in microsomal membrane lipid composition to the pulmonary injury induced by oleic acid. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1023, 290-297.	1.4	10
68	SURFACTANT PROTEIN-C ENHANCES LIPID AGGREGATION ACTIVITY OF SURFACTANT PROTEIN-A. Biochemical Society Transactions, 1994, 22, 370S-370S.	1.6	10
69	Inhaled nitric oxide affects endogenous surfactant in experimental lung transplantation. Transplantation, 2004, 77, 812-818.	0.5	10
70	Folding and Intramembraneous BRICHOS Binding of the Prosurfactant Protein C Transmembrane Segment. Journal of Biological Chemistry, 2015, 290, 17628-17641.	1.6	10
71	Molecular and Functional Properties of Surfactant Protein A. Lung Biology in Health and Disease, 2005, , 59-86.	0.1	10
72	Role of Surfactant Protein a (SP-A)/Lipid Interactions for SP-A Functions in the Lung. Fetal and Pediatric Pathology, 2001, 20, 249-268.	0.4	10

#	Article	IF	CITATIONS
73	Deacylated pulmonary surfactant protein SP-C has different effects on the thermotroplc behaviour of bilayers of dipalmitoylphosphatidyl-glycerol (DPPG) than the native acylated protein. Biochemical Society Transactions, 1994, 22, 372S-372S.	1.6	9
74	ROLE OF SURFACTANT PROTEIN A (SP-A)/LIPID INTERACTIONS FOR SP-A FUNCTIONS IN THE LUNG. Fetal and Pediatric Pathology, 2001, 20, 249-268.	0.3	9
75	Equilibrium studies of a fluorescent tacrolimus binding to surfactant protein A. Analytical Biochemistry, 2005, 340, 57-65.	1.1	9
76	Surfactant protein A (SP-A)-tacrolimus complexes have a greater anti-inflammatory effect than either SP-A or tacrolimus alone on human macrophage-like U937 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 384-391.	2.0	9
77	Delayed alveolar clearance of nanoparticles through control of coating composition and interaction with lung surfactant protein A. Materials Science and Engineering C, 2022, 134, 112551.	3.8	9
78	Differential Scanning Calorimetry of Protein–Lipid Interactions. Methods in Molecular Biology, 2019, 2003, 91-106.	0.4	8
79	Synergistic Action of Antimicrobial Lung Proteins against Klebsiella pneumoniae. International Journal of Molecular Sciences, 2021, 22, 11146.	1.8	8
80	Signaling Pathways That Mediate Alveolar Macrophage Activation by Surfactant Protein A and IL-4. Frontiers in Immunology, 2022, 13, 860262.	2.2	8
81	Biosynthesis of phosphatidic acid by liver and lung of maternal and fetal rabbits. International Journal of Biochemistry & Cell Biology, 1979, 10, 463-467.	0.8	7
82	Substrate selectivity of lysophosph atidylcholine: Lysophosph atidylcholine acyltransferase from rabbit lung. International Journal of Biochemistry & Cell Biology, 1984, 16, 773-778.	0.8	6
83	Pulmonary surfactant protein SP-B is significantly more immunoreactive in anionic than in zwitterionic bilayers. FEBS Letters, 2001, 494, 236-240.	1.3	6
84	Conserved Bacterial-Binding Peptides of the Scavenger-Like Human Lymphocyte Receptor CD6 Protect From Mouse Experimental Sepsis. Frontiers in Immunology, 2018, 9, 627.	2.2	6
85	Microsomal membrane fluidity and phosphatidylcholine synthesis in rabbit lung under high oxygen tension. Cell Biochemistry and Function, 1989, 7, 193-199.	1.4	5
86	Quantitation of Pulmonary Surfactant Protein SP-B in the Absence or Presence of Phospholipids by Enzyme-Linked Immunosorbent Assay. Analytical Biochemistry, 2001, 293, 78-87.	1.1	5
87	Pulmonary surfactant inactivation by \hat{l}^2 -D-glucan and protective role of surfactant protein A. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112237.	2.5	4
88	Changes in lipid fluidity and composition of lamellar bodies in respiratory distress induced by oleic acid. Biochemical Society Transactions, 1989, 17, 792-794.	1.6	3
89	47th International Conference on the Bioscience of Lipids, Membrane microdomains: lipid rafts and caveolae. Chemistry and Physics of Lipids, 2006, 143, 73-79.	1.5	1
90	Beneficial Effects Of The Instillation Of A Synthetic KL4-surfactant In Experimental Lung Transplantation. , 2010, , .		0

#	Article	IF	CITATIONS
91	Effect of Smooth Bacterial Lipopolysaccharide on the Behavior of DPPC Films. Biophysical Journal, 2010, 98, 78a.	0.2	0
92	Deterioration of Pulmonary Surfactant by Volatile Anesthetics. Biophysical Journal, 2012, 102, 496a.	0.2	0