Akira Ikari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8471911/publications.pdf

Version: 2024-02-01

		218677	302126
88	1,996 citations	26	39
papers	citations	h-index	g-index
91	91	91	2221
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Discovery and Structure-Based Optimization of Novel Atg4B Inhibitors for the Treatment of Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2022, 65, 4878-4892.	6.4	4
2	Elevation of Hyaluronan Synthase by Magnesium Supplementation Mediated through the Activation of GSK3 and CREB in Human Keratinocyte-Derived HaCaT Cells. International Journal of Molecular Sciences, 2022, 23, 71.	4.1	7
3	Increase in Anticancer Drug-Induced Toxicity by Fisetin in Lung Adenocarcinoma A549 Spheroid Cells Mediated by the Reduction of Claudin-2 Expression. International Journal of Molecular Sciences, 2022, 23, 7536.	4.1	2
4	Upregulation of Chemoresistance by Mg2+ Deficiency through Elevation of ATP Binding Cassette Subfamily B Member 1 Expression in Human Lung Adenocarcinoma A549 Cells. Cells, 2021, 10, 1179.	4.1	3
5	Elevation of Chemosensitivity of Lung Adenocarcinoma A549 Spheroid Cells by Claudin-2 Knockdown through Activation of Glucose Transport and Inhibition of Nrf2 Signal. International Journal of Molecular Sciences, 2021, 22, 6582.	4.1	9
6	Reactive Oxygen Species Downregulate Transient Receptor Potential Melastatin 6 Expression Mediated by the Elevation of miR-24-3p in Renal Tubular Epithelial Cells. Cells, 2021, 10, 1893.	4.1	6
7	Protective Effects of Ethanol Extract of Brazilian Green Propolis and Apigenin against Weak Ultraviolet Ray-B-Induced Barrier Dysfunction via Suppressing Nitric Oxide Production and Mislocalization of Claudin-1 in HaCaT Cells. International Journal of Molecular Sciences, 2021, 22, 10326.	4.1	6
8	9,10-Phenanthrenequinone provokes dysfunction of brain endothelial barrier through down-regulating expression of claudin-5. Toxicology, 2021, 461, 152896.	4.2	6
9	Loxoprofen enhances intestinal barrier function via generation of its active metabolite by carbonyl reductase 1 in differentiated Caco-2Âcells. Chemico-Biological Interactions, 2021, 348, 109634.	4.0	4
10	Down-Regulation of Claudin-2 Expression by Cyanidin-3-Glucoside Enhances Sensitivity to Anticancer Drugs in the Spheroid of Human Lung Adenocarcinoma A549 Cells. International Journal of Molecular Sciences, 2021, 22, 499.	4.1	14
11	Inverse regulation of claudin-2 and -7 expression by p53 and hepatocyte nuclear factor $4\hat{l}_{\pm}$ in colonic MCE301 cells. Tissue Barriers, 2021, 9, 1860409.	3.2	1
12	Claudin-2 binding peptides, VPDSM and DSMKF, down-regulate claudin-2 expression and anticancer resistance in human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118642.	4.1	12
13	Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2020, 63, 10396-10411.	6.4	32
14	Increase in Toxicity of Anticancer Drugs by PMTPV, a Claudin-1-Binding Peptide, Mediated via Down-Regulation of Claudin-1 in Human Lung Adenocarcinoma A549 Cells. International Journal of Molecular Sciences, 2020, 21, 5909.	4.1	6
15	Upregulation of Claudin-7 Expression by Angiotensin II in Colonic Epithelial Cells of Mice Fed with NaCl-Depleted Diets. International Journal of Molecular Sciences, 2020, 21, 1442.	4.1	3
16	Na+-Coupled Nutrient Cotransport Induced Luminal Negative Potential and Claudin-15 Play an Important Role in Paracellular Na+ Recycling in Mouse Small Intestine. International Journal of Molecular Sciences, 2020, 21, 376.	4.1	9
17	Kaempferide Enhances Chemosensitivity of Human Lung Adenocarcinoma A549 Cells Mediated by the Decrease in Phosphorylation of Akt and Claudin-2 Expression. Nutrients, 2020, 12, 1190.	4.1	17
18	Weak Ultraviolet B Enhances the Mislocalization of Claudin-1 Mediated by Nitric Oxide and Peroxynitrite Production in Human Keratinocyte-Derived HaCaT Cells. International Journal of Molecular Sciences, 2020, 21, 7138.	4.1	9

#	Article	IF	CITATIONS
19	Brazilian Green Propolis Rescues Oxidative Stress-Induced Mislocalization of Claudin-1 in Human Keratinocyte-Derived HaCaT Cells. International Journal of Molecular Sciences, 2019, 20, 3869.	4.1	16
20	Rescue of tight junctional localization of a claudin-16 mutant D97S by antimalarial medicine primaquine in Madin-Darby canine kidney cells. Scientific Reports, 2019, 9, 9647.	3.3	5
21	Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Scientific Reports, 2019, 9, 13753.	3.3	24
22	Cyanidin Increases the Expression of Mg2+ Transport Carriers Mediated by the Activation of PPARÎ \pm in Colonic Epithelial MCE301 Cells. Nutrients, 2019, 11, 641.	4.1	6
23	ZO-2 Suppresses Cell Migration Mediated by a Reduction in Matrix Metalloproteinase 2 in Claudin-18-Expressing Lung Adenocarcinoma A549 Cells. Biological and Pharmaceutical Bulletin, 2019, 42, 247-254.	1.4	7
24	Flavonol glycosides of Rosa multiflora regulates intestinal barrier function through inhibiting claudin expression in differentiated Caco-2 cells. Nutrition Research, 2019, 72, 92-104.	2.9	11
25	Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anti-Cancer Drugs, 2019, 30, 251-259.	1.4	21
26	Upregulation of transient receptor potential melastatin 6 channel expression by rosiglitazone and allâ€transâ€retinoic acid in erlotinibâ€treated renal tubular epithelial cells. Journal of Cellular Physiology, 2019, 234, 8951-8962.	4.1	4
27	Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells. Journal of Nutritional Biochemistry, 2018, 56, 205-214.	4.2	19
28	Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 769-780.	4.1	23
29	Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis. Biochemical and Biophysical Research Communications, 2018, 497, 437-443.	2.1	37
30	Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 470-479.	4.1	20
31	Photoinduced Generation of Acyl Radicals from Simple Aldehydes, Access to 3-Acyl-4-arylcoumarin Derivatives, and Evaluation of Their Antiandrogenic Activities. Journal of Organic Chemistry, 2018, 83, 1988-1996.	3.2	57
32	Facilitation of 9,10-phenanthrenequinone-elicited neuroblastoma cell apoptosis by NAD(P)H:quinone oxidoreductase 1. Chemico-Biological Interactions, 2018, 279, 10-20.	4.0	8
33	Sodium Citrate Increases Expression and Flux of Mg2+ Transport Carriers Mediated by Activation of MEK/ERK/c-Fos Pathway in Renal Tubular Epithelial Cells. Nutrients, 2018, 10, 1345.	4.1	8
34	Increase in resistance to anticancer drugs involves occludin in spheroid culture model of lung adenocarcinoma A549 cells. Scientific Reports, 2018, 8, 15157.	3.3	13
35	Luminal Na ⁺ homeostasis has an important role in intestinal peptide absorption in vivo. American Journal of Physiology - Renal Physiology, 2018, 315, G799-G809.	3.4	8
36	Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. Journal of Biological Chemistry, 2017, 292, 2411-2421.	3.4	36

#	Article	IF	CITATIONS
37	The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg2+ regulator claudin-16 in renal tube epithelial cells. Journal of Biological Chemistry, 2017, 292, 13034-13044.	3.4	21
38	Upâ€Regulation of Transient Receptor Potential Melastatin 6 Channel Expression by Tumor Necrosis Factorâ€∔± in the Presence of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Journal of Cellular Physiology, 2017, 232, 2841-2850.	4.1	6
39	Instability of C154Y variant of aldo-keto reductase 1C3. Chemico-Biological Interactions, 2017, 276, 194-202.	4.0	7
40	Up-regulation of claudin-2 expression by aldosterone in colonic epithelial cells of mice fed with NaCl-depleted diets. Scientific Reports, 2017, 7, 12223.	3.3	12
41	Claudin-5, -7, and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 293-302.	4.1	43
42	Chlorpheniramine Increases Paracellular Permeability to Marker Fluorescein Lucifer Yellow Mediated by Internalization of Occludin in Murine Colonic Epithelial Cells. Biological and Pharmaceutical Bulletin, 2017, 40, 1299-1305.	1.4	14
43	Kaempherol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells. Nutrients, 2017, 9, 597.	4.1	57
44	Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2016, 291, 24787-24799.	3.4	31
45	Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1170-1178.	4.1	41
46	Hyperosmolarity-Induced Down-Regulation of Claudin-2 Mediated by Decrease in PKCÎ ² -Dependent GATA-2 in MDCK Cells. Journal of Cellular Physiology, 2015, 230, 2776-2787.	4.1	12
47	Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients, 2015, 7, 4578-4592.	4.1	79
48	Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1. Organic and Biomolecular Chemistry, 2015, 13, 7487-7499.	2.8	15
49	Threonine-408 Regulates the Stability of Human Pregnane X Receptor through Its Phosphorylation and the CHIP/Chaperone-Autophagy Pathway. Drug Metabolism and Disposition, 2015, 44, 137-150.	3.3	15
50	A platelet-activating factor (PAF) receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation. Biochemical Pharmacology, 2015, 93, 482-495.	4.4	15
51	Downregulation of transient receptor potential M6 channels as a cause of hypermagnesiuric hypomagnesemia in obese type 2 diabetic rats. American Journal of Physiology - Renal Physiology, 2015, 308, F1386-F1397.	2.7	23
52	Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2326-2336.	2.6	9
53	Tight Junctional Localization of Claudin-16 Is Regulated by Syntaxin 8 in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 13112-13123.	3.4	19
54	Threonine-290 Regulates Nuclear Translocation of the Human Pregnane X Receptor through Its Phosphorylation/Dephosphorylation by Ca ²⁺ /Calmodulin-Dependent Protein Kinase II and Protein Phosphatase 1. Drug Metabolism and Disposition, 2014, 42, 1708-1718.	3.3	15

#	Article	IF	Citations
55	Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicology and Applied Pharmacology, 2014, 278, 180-189.	2.8	25
56	Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2079-2088.	4.1	70
57	Hyperosmolarity-induced up-regulation of claudin-4 mediated by NADPH oxidase-dependent H2O2 production and Sp1/c-Jun cooperation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2617-2627.	4.1	22
58	Increase in claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1110-1118.	4.1	80
59	Enhancement of cell–cell contact by claudinâ€4 in renal epithelial madinâ€darby canine kidney cells. Journal of Cellular Biochemistry, 2012, 113, 499-507.	2.6	15
60	Decrease in transient receptor potential melastatin 6 mRNA stability caused by rapamycin in renal tubular epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1502-1508.	2.6	22
61	Claudin-2 knockdown decreases matrix metalloproteinase-9 activity and cell migration via suppression of nuclear Sp1 in A549 cells. Life Sciences, 2011, 88, 628-633.	4.3	52
62	Decrease in claudinâ€2 expression enhances cell migration in renal epithelial madin–darby canine kidney cells. Journal of Cellular Physiology, 2011, 226, 1471-1478.	4.1	33
63	Epidermal growth factor increases clathrinâ€dependent endocytosis and degradation of claudinâ€2 protein in MDCK II cells. Journal of Cellular Physiology, 2011, 226, 2448-2456.	4.1	51
64	Magnesium deficiency suppresses cell cycle progression mediated by increase in transcriptional activity of p21Cip1 and p27Kip1 in renal epithelial NRK-52E cells. Journal of Cellular Biochemistry, 2011, 112, 3563-3572.	2.6	12
65	Upâ€regulation of TRPM6 transcriptional activity by APâ€1 in renal epithelial cells. Journal of Cellular Physiology, 2010, 222, 481-487.	4.1	30
66	Magnesium deprivation inhibits a MEK–ERK cascade and cell proliferation in renal epithelial Madin-Darby canine kidney cells. Life Sciences, 2010, 86, 766-773.	4.3	18
67	Extracellular Mg2+ regulates the tight junctional localization of claudin-16 mediated by ERK-dependent phosphorylation. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 415-421.	2.6	18
68	Functional Association between K+-Cl- Cotransporter-4 and H+,K+-ATPase in the Apical Canalicular Membrane of Gastric Parietal Cells. Journal of Biological Chemistry, 2009, 284, 619-629.	3.4	44
69	Epidermal growth factor increases claudin-4 expression mediated by Sp1 elevation in MDCK cells. Biochemical and Biophysical Research Communications, 2009, 384, 306-310.	2.1	26
70	Down-regulation of TRPM6-mediated magnesium influx by cyclosporin A. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 333-343.	3.0	36
71	Claudin-16 is directly phosphorylated by protein kinase a independently of a vasodilator-stimulated phosphoprotein-mediated pathway. Journal of Cellular Physiology, 2008, 214, 221-229.	4.1	35
72	Activation of a polyvalent cation-sensing receptor decreases magnesium transport via claudin-16. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 283-290.	2.6	42

#	Article	IF	CITATIONS
73	TRPM6 expression and cell proliferation are up-regulated by phosphorylation of ERK1/2 in renal epithelial cells. Biochemical and Biophysical Research Communications, 2008, 369, 1129-1133.	2.1	44
74	Effect of Psychologic Stress on Peroxidase and Thiocyanate Levels in Human Saliva Detected by Ultraweak Chemiluminescence. Journal of Health Science, 2007, 53, 161-169.	0.9	10
75	Phosphorylation of paracellin-1 at Ser217 by protein kinase A is essential for localization in tight junctions. Journal of Cell Science, 2006, 119, 1781-1789.	2.0	95
76	Dysfunction of Paracellin-1 by Dephosphorylation in Dahl Salt-Sensitive Hypertensive Rats. Journal of Physiological Sciences, 2006, 56, 379-383.	2.1	10
77	Reorganization of ZO-1 by sodium-dependent glucose transporter activation after heat stress in LLC-PK1 cells. Journal of Cellular Physiology, 2005, 203, 471-478.	4.1	32
78	The effects of performance anxiety on salivary ultra-weak chemiluminescence. Stress and Health, 2005, 21, 263-268.	2.6	7
79	Role of actin in the cAMP-dependent activation of sodium/glucose cotransporter in renal epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 20-24.	2.6	12
80	Sodium-dependent glucose transporter reduces peroxynitrite and cell injury caused by cisplatin in renal tubular epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1717, 109-117.	2.6	35
81	Association of Paracellin-1 with ZO-1 Augments the Reabsorption of Divalent Cations in Renal Epithelial Cells. Journal of Biological Chemistry, 2004, 279, 54826-54832.	3.4	75
82	Recovery from heat shock injury by activation of Na+-glucose cotransporter in renal epithelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1643, 47-53.	4.1	9
83	Arachidonic acid-activated Na+-dependent Mg2+ efflux in rat renal epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1618, 1-7.	2.6	10
84	Up-regulation of Sodium-dependent Glucose Transporter by Interaction with Heat Shock Protein 70. Journal of Biological Chemistry, 2002, 277, 33338-33343.	3.4	45
85	Magnesium influx enhanced by nitric oxide in hypertensive rat proximal tubule cells. Biochemical and Biophysical Research Communications, 2002, 294, 710-713.	2.1	11
86	Expression of GFP-Tagged Low Affinity Na+-Dependent Glucose Transporter in Xenopus Oocytes and CHO Cells The Japanese Journal of Physiology, 2002, 52, 395-398.	0.9	8
87	Up-regulation of Na+-dependent Mg2+ transport by nitric oxide and cyclic GMP pathway in renal epithelial cells. European Journal of Pharmacology, 2002, 451, 133-139.	3.5	10
88	Polyvalent Cation-Sensing Mechanism Increased Na+-Independent Mg2+ Transport in Renal Epithelial Cells. Biochemical and Biophysical Research Communications, 2001, 287, 671-674.	2.1	36