
Yi-Yong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8471791/publications.pdf Version: 2024-02-01

YI-YONG ZHU

#	Article	IF	CITATIONS
1	Distinct bacterial community compositions in the Populus rhizosphere under three types of organic matter input across different soil types. Plant and Soil, 2022, 470, 51-63.	3.7	7
2	BNI-release mechanisms in plant root systems: current status of understanding. Biology and Fertility of Soils, 2022, 58, 225-233.	4.3	12
3	High-sorgoleone producing sorghum genetic stocks suppress soil nitrification and N2O emissions better than low-sorgoleone producing genetic stocks. Plant and Soil, 2022, 477, 793-805.	3.7	5
4	Characterization of Different Phosphorus Forms in Flooded and Upland Paddy Soils Incubated with Various Manures. ACS Omega, 2021, 6, 3259-3266.	3.5	5
5	Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nature Communications, 2021, 12, 735.	12.8	97
6	Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H ⁺ -ATPase 2. Science Advances, 2021, 7, .	10.3	78
7	Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. Molecular Plant, 2021, 14, 838-846.	8.3	24
8	Molecular regulation of zinc deficiency responses in plants. Journal of Plant Physiology, 2021, 261, 153419.	3.5	34
9	Proteomic Analysis Demonstrates a Molecular Dialog Between Trichoderma guizhouense NJAU 4742 and Cucumber (Cucumis sativus L) Roots: Role in Promoting Plant Growth. Molecular Plant-Microbe Interactions, 2021, 34, MPMI-08-20-0240.	2.6	9
10	Molecular basis of plasma membrane H+-ATPase function and potential application in the agricultural production. Plant Physiology and Biochemistry, 2021, 168, 10-16.	5.8	13
11	Genome-Wide Identification, Characterization, and Expression Analyses of P-Type ATPase Superfamily Genes in Soybean. Agronomy, 2021, 11, 71.	3.0	5
12	A mycorrhizaâ€specific H ⁺ â€ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant, Cell and Environment, 2020, 43, 1069-1083.	5.7	31
13	Comprehensive In Silico Characterization and Expression Profiling of Nine Gene Families Associated with Calcium Transport in Soybean. Agronomy, 2020, 10, 1539.	3.0	15
14	Genome-Wide Identification, Expression Profiling, and Evolution of Phosphate Transporter Gene Family in Green Algae. Frontiers in Genetics, 2020, 11, 590947.	2.3	10
15	Frequent alternate wetting and drying irrigation mitigates the effect of low phosphorus on rice grain yield in a 4â€year field trial by increasing soil phosphorus release and rice root growth. Food and Energy Security, 2020, 9, e206.	4.3	21
16	Post-translational regulation of plasma membrane H+-ATPase is involved in the release of biological nitrification inhibitors from sorghum roots. Plant and Soil, 2020, 450, 357-372.	3.7	9
17	Potassium alleviates ammonium toxicity in rice by reducing its uptake through activation of plasma membrane H+-ATPase to enhance proton extrusion. Plant Physiology and Biochemistry, 2020, 151, 429-437.	5.8	28
18	Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD- and phoC-harboring functional microbial populations. Soil Biology and Biochemistry, 2019, 139, 107632.	8.8	110

YI-YONG ZHU

#	Article	IF	CITATIONS
19	Co-Translational Insertion of Aquaporins into Liposome for Functional Analysis via an E. coli Based Cell-Free Protein Synthesis System. Cells, 2019, 8, 1325.	4.1	2
20	Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2019, 139, 152-160.	5.8	51
21	Cell-Free Protein Synthesis: Chassis toward the Minimal Cell. Cells, 2019, 8, 315.	4.1	19
22	Integrated analyses of miRNAome and transcriptome reveal zinc deficiency responses in rice seedlings. BMC Plant Biology, 2019, 19, 585.	3.6	27
23	Overexpression of rice aquaporin <i>OsPIP1;2</i> improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. Journal of Experimental Botany, 2019, 70, 671-681.	4.8	60
24	Transcriptome profiles of soybean leaves and roots in response to zinc deficiency. Physiologia Plantarum, 2019, 167, 330-351.	5.2	27
25	Strategies for improving fertilizer phosphorus use efficiency in Chinese cropping systems. Frontiers of Agricultural Science and Engineering, 2019, 6, 341.	1.4	14
26	Further insights into underlying mechanisms for the release of biological nitrification inhibitors from sorghum roots. Plant and Soil, 2018, 423, 99-110.	3.7	21
27	Involvement of plasma membrane H ⁺ â€ATPase in the ammoniumâ€nutrition response of barley roots. Journal of Plant Nutrition and Soil Science, 2018, 181, 878-885.	1.9	13
28	Boron Alleviates Aluminum Toxicity by Promoting Root Alkalization in Transition Zone via Polar Auxin Transport. Plant Physiology, 2018, 177, 1254-1266.	4.8	65
29	Early Transcriptomic Response to Phosphate Deprivation in Soybean Leaves as Revealed by RNA-Sequencing. International Journal of Molecular Sciences, 2018, 19, 2145.	4.1	19
30	Overexpression of Phosphate Transporter Gene CmPht1;2 Facilitated Pi Uptake and Alternated the Metabolic Profiles of Chrysanthemum Under Phosphate Deficiency. Frontiers in Plant Science, 2018, 9, 686.	3.6	13
31	Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. Journal of Experimental Botany, 2017, 68, 1731-1741.	4.8	75
32	Analysis of EF-Hand Proteins in Soybean Genome Suggests Their Potential Roles in Environmental and Nutritional Stress Signaling. Frontiers in Plant Science, 2017, 8, 877.	3.6	69
33	The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway. Plant Physiology, 2016, 171, 1686-1703.	4.8	61
34	Transcriptional response of plasma membrane H+-ATPase genes to ammonium nutrition and its functional link to the release of biological nitrification inhibitors from sorghum roots. Plant and Soil, 2016, 398, 301-312.	3.7	22
35	Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant and Soil, 2016, 398, 207-227.	3.7	52
36	ldentification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant and Soil, 2015, 386, 205-221.	3.7	52

YI-YONG ZHU

#	Article	IF	CITATIONS
37	The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Science, 2015, 234, 14-21.	3.6	103
38	Role of microRNAs in plant responses to nutrient stress. Plant and Soil, 2014, 374, 1005-1021.	3.7	96
39	Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant and Soil, 2013, 366, 243-259.	3.7	143
40	Citrate exudation induced by aluminum is independent of plasma membrane H+-ATPase activity and coupled with potassium efflux from cluster roots of phosphorus-deficient white lupin. Plant and Soil, 2013, 366, 389-400.	3.7	12
41	Spatialâ€ŧemporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in <i>Sorghum bicolor</i> . New Phytologist, 2013, 200, 1102-1115.	7.3	72
42	Effect of homogeneous and heterogeneous supply of nitrate and ammonium on nitrogen uptake and distribution in tomato seedlings. Plant Growth Regulation, 2012, 68, 271-280.	3.4	6
43	Comparative physiological responses of <i>Solanum nigrum</i> and <i>Solanum torvum</i> to cadmium stress. New Phytologist, 2012, 196, 125-138.	7.3	153
44	Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum. Plant Physiology and Biochemistry, 2012, 61, 153-161.	5.8	55
45	Interplay among NH 4 + uptake, rhizosphere pH and plasma membrane H+-ATPase determine the release of BNIs in sorghum roots – possible mechanisms and underlying hypothesis. Plant and Soil, 2012, 358, 131-141.	3.7	33
46	Stimulation of phosphorus uptake by ammonium nutrition involves plasma membrane H+ ATPase in rice roots. Plant and Soil, 2012, 357, 205-214.	3.7	56
47	Involvement of Plasma Membrane H+-ATPase in Adaption of Rice to Ammonium Nutrient. Rice Science, 2011, 18, 335-342.	3.9	12
48	Adaptation of plasma membrane H+ ATPase and H+ pump to P deficiency in rice roots. Plant and Soil, 2011, 349, 3-11.	3.7	36
49	Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in <i>Solanum lycopersicum</i> . Physiologia Plantarum, 2010, 138, 226-237.	5.2	127
50	Proton pump OsA8 is linked to phosphorus uptake and translocation in rice. Journal of Experimental Botany, 2009, 60, 557-565.	4.8	43
51	Adaptation of plasma membrane H ⁺ â€ATPase of rice roots to low pH as related to ammonium nutrition. Plant, Cell and Environment, 2009, 32, 1428-1440.	5.7	137
52	Effect of fungal fusaric acid on the root and leaf physiology of watermelon (Citrullus lanatus) seedlings. Plant and Soil, 2008, 308, 255-266.	3.7	31
53	Nitrogen metabolism disorder in watermelon leaf caused by fusaric acid. Physiological and Molecular Plant Pathology, 2007, 71, 69-77.	2.5	11
54	A Link Between Citrate and Proton Release by Proteoid Roots of White Lupin (Lupinus albus L.) Grown Under Phosphorus-deficient Conditions?. Plant and Cell Physiology, 2005, 46, 892-901.	3.1	85

#	Article	IF	CITATIONS
55	Adaptation of H+-Pumping and Plasma Membrane H+ ATPase Activity in Proteoid Roots of White Lupin under Phosphate Deficiency. Plant Physiology, 2002, 129, 50-63.	4.8	243
56	Improvement of P Use Efficiency and P Balance of Rice–Wheat Rotation System According to the Long-Term Field Experiments in the Taihu Lake Basin. Frontiers in Environmental Science, 0, 10, .	3.3	1