Jun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8471611/publications.pdf

Version: 2024-02-01

566801 454577 1,306 31 15 30 citations h-index g-index papers 34 34 34 690 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. Journal of Agricultural and Food Chemistry, 2020, 68, 5024-5038.	2.4	238
2	Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Science of the Total Environment, 2020, 708, 135063.	3.9	150
3	Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere, 2021, 281, 130718.	4.2	125
4	Carbonic Anhydrase Enzyme-MOFs Composite with a Superior Catalytic Performance to Promote CO ₂ Absorption into Tertiary Amine Solution. Environmental Science & Envi	4.6	122
5	Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification. Applied Microbiology and Biotechnology, 2016, 100, 9787-9794.	1.7	94
6	Improvement of Alcaligenes sp.TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport. Bioresource Technology, 2021, 327, 124785.	4.8	91
7	Bamboo charcoal fused with polyurethane foam for efficiently removing organic solvents from wastewater: experimental and simulation. Biochar, 2022, 4, .	6.2	84
8	Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: Possessed redox characteristics and secreted endogenous electron mediator. Science of the Total Environment, 2021, 781, 146686.	3.9	76
9	Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China. Chemosphere, 2022, 293, 133576.	4.2	63
10	Process Optimization of Electrochemical Oxidation of Ammonia to Nitrogen for Actual Dyeing Wastewater Treatment. International Journal of Environmental Research and Public Health, 2019, 16, 2931.	1.2	41
11	A fungus–bacterium co-culture synergistically promoted nitrogen removal by enhancing enzyme activity and electron transfer. Science of the Total Environment, 2021, 754, 142109.	3.9	31
12	Mutual inhibition mechanism of simultaneous catalytic removal of NO and toluene on Mn-based catalysts. Journal of Colloid and Interface Science, 2022, 607, 1189-1200.	5.0	24
13	Gene cloning, expression, and reducing property enhancement of nitrous oxide reductase from Alcaligenes denitrificans strain TB. Environmental Pollution, 2018, 239, 43-52.	3.7	22
14	Effects of carbon nanotube on denitrification performance of Alcaligenes sp. TB: Promotion of electron generation, transportation and consumption. Ecotoxicology and Environmental Safety, 2019, 183, 109507.	2.9	22
15	N2O production in the Fell(EDTA)-NO reduction process: the effects of carbon source and pH. Bioprocess and Biosystems Engineering, 2015, 38, 1373-1380.	1.7	17
16	Fe ^{II} (EDTA)–NO Reduction by Mn Powder in Wet Flue Gas Denitrification Technology Coupled with Mn ²⁺ Recycling: Performance, Kinetics, and Mechanism. Energy & En	2.5	17
17	A newly isolated and rapid denitrifier Pseudomonas citronellolis WXP-4: difference in N2O emissions under aerobic and anaerobic conditions. Bioprocess and Biosystems Engineering, 2020, 43, 811-820.	1.7	12
18	Bamboo charcoal powder-based polyurethane as packing material in biotrickling filter for simultaneous removal of n-hexane and dichloromethane. Bioresource Technology, 2022, 345, 126427.	4.8	12

#	Article	IF	CITATIONS
19	Increasing N,N-dimethylacetamide degradation and mineralization efficiency by co-culture of Rhodococcus ruber HJM-8 and Paracoccus communis YBH-X. Chemosphere, 2022, 303, 134935.	4.2	9
20	Simultaneous removal of SO2 and NO by Fell(EDTA) solution: promotion of Mn powder and mechanism of reduction. Environmental Science and Pollution Research, 2019, 26, 28808-28816.	2.7	8
21	Heterologous expression and functional study of nitric oxide reductase catalytic reduction peptide from Achromobacter denitrificans strain TB. Chemosphere, 2020, 253, 126739.	4.2	8
22	Prediction and inhibition of the N2O accumulation in the BioDeNO x process for NO x removal from flue gas. Bioprocess and Biosystems Engineering, 2016, 39, 1859-1865.	1.7	7
23	Control of H ₂ S generation in simultaneous removal of NO and SO ₂ by rotating drum biofilter coupled with Fe ^{II} (EDTA). Environmental Technology (United) Tj ETQq1 1 0.78-	4 13.1≥ 4 rgBT	<i>h</i> Overlock
24	Rapid and Complete Biodegradation of Acrylic Acid by a Novel Strain Rhodococcus ruber JJ-3: Kinetics, Carbon Balance, and Degradation Pathways. Biotechnology and Bioprocess Engineering, 2020, 25, 589-598.	1.4	7
25	<i>NosZ</i> gene cloning, reduction performance and structure of <i>Pseudomonas citronellolis</i> WXP-4 nitrous oxide reductase. RSC Advances, 2022, 12, 2549-2557.	1.7	5
26	Efficient biotransformation of sulfide in anaerobic sequencing batch reactor by composite microbial agent: performance optimization and microbial community analysis. Environmental Science and Pollution Research, 2021, 28, 48718-48727.	2.7	4
27	Variation of current density with time as a novel method for efficient electrochemical treatment of real dyeing wastewater with energy savings. Environmental Science and Pollution Research, 2022, 29, 49976-49984.	2.7	4
28	A Mass-Transfer Model of Nitric Oxide Removal In a Rotating Drum Biofilter Coupled with Fe ^{II} (EDTA) Absorption. Industrial & Engineering Chemistry Research, 2018, 57, 8144-8151.	1.8	3
29	Characterization and Functional Analysis of Bacillus aryabhattai CY for Acrylic Acid Biodegradation: Immobilization and Metabolic Pathway. Biotechnology and Bioprocess Engineering, 2021, 26, 910-922.	1.4	2
30	Utilizing Spent Batteries to Fabricate Ni/ZnO-MnO ₂ Electrodes for Electrochemical Ammonia Oxidation. Journal of the Electrochemical Society, 2021, 168, 126505.	1.3	1
31	A mesoscopic fluidic reactor for studying the bioreduction ability of biofilm in a chemical absorption-biological reduction system for NO removal. Bioremediation Journal, 0, , 1-7.	1.0	0