
Tsukasa Oikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8471008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Type XVII collagen interacts with the aPKCâ€PAR complex and maintains epidermal cell polarity. Experimental Dermatology, 2021, 30, 62-67.	1.4	11
2	ARF6 and AMAP1 are major targets of <i>KRAS</i> and <i>TP53</i> mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17450-17459.	3.3	96
3	Necessity of p53-binding to the CDH1 locus for its expression defines two epithelial cell types differing in their integrity. Scientific Reports, 2018, 8, 1595.	1.6	13
4	Epithelial-specific histone modification of the miR-96/182 locus targeting AMAP1 mRNA predisposes p53 to suppress cell invasion in epithelial cells. Cell Communication and Signaling, 2018, 16, 94.	2.7	8
5	p53-Dependent and -Independent Epithelial Integrity: Beyond miRNAs and Metabolic Fluctuations. Cancers, 2018, 10, 162.	1.7	15
6	Frequent overexpression of AMAP1, an Arf6 effector in cell invasion, is characteristic of the MMTV-PyMT rather than the MMTV-Neu human breast cancer model. Cell Communication and Signaling, 2018, 16, 1.	2.7	56
7	ARF1 recruits RAC1 to leading edge in neutrophil chemotaxis. Cell Communication and Signaling, 2017, 15, 36.	2.7	11
8	P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance. Journal of Cell Biology, 2016, 213, 81-95.	2.3	57
9	ZEB1 induces EPB41L5 in the cancer mesenchymal program that drives ARF6-based invasion, metastasis and drug resistance. Oncogenesis, 2016, 5, e259-e259.	2.1	37
10	High expression of EPB41L5, an integral component of the Arf6-driven mesenchymal program, correlates with poor prognosis of squamous cell carcinoma of the tongue. Cell Communication and Signaling, 2016, 14, 28.	2.7	19
11	Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer. Nature Communications, 2016, 7, 10656.	5.8	81
12	Tumor responsiveness to statins requires overexpression of the ARF6 pathway. Molecular and Cellular Oncology, 2016, 3, e1185564.	0.3	0
13	P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance. Journal of Experimental Medicine, 2016, 213, 2135OIA33.	4.2	0
14	A Novel Phthalimide Derivative, TC11, Has Preclinical Effects on High-Risk Myeloma Cells and Osteoclasts. PLoS ONE, 2015, 10, e0116135.	1.1	8
15	Regulation of osteoclasts by membrane-derived lipid mediators. Cellular and Molecular Life Sciences, 2013, 70, 3341-3353.	2.4	37
16	Acquired Expression of NFATc1 Downregulates E-Cadherin and Promotes Cancer Cell Invasion. Cancer Research, 2013, 73, 5100-5109.	0.4	28
17	IRSp53 Mediates Podosome Formation via VASP in NIH-Src Cells. PLoS ONE, 2013, 8, e60528.	1.1	19
18	Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell–cell fusion. Journal of Cell Biology, 2012, 197, 553-568.	2.3	94

Τςυκάδα Οικάψα

#	Article	IF	CITATIONS
19	Possible role of IRTKS in Tks5-driven osteoclast fusion. Communicative and Integrative Biology, 2012, 5, 511-515.	0.6	15
20	Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget, 2010, 1, 320-8.	0.8	40
21	Membrane lipids in invadopodia and podosomes: Key structures for cancer invasion and metastasis. Oncotarget, 2010, 1, 320-328.	0.8	63
22	PtdIns(3,4)P2 instigates focal adhesions to generate podosomes. Cell Adhesion and Migration, 2009, 3, 195-197.	1.1	27
23	Sequential signals toward podosome formation in NIH-src cells. Journal of Cell Biology, 2008, 182, 157-169.	2.3	201
24	Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion. Journal of Cell Science, 2007, 120, 86-100.	1.2	119
25	Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. Journal of Cell Biology, 2006, 172, 269-279.	2.3	329
26	Optimization of WAVE2 complex–induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac. Journal of Cell Biology, 2006, 173, 571-585.	2.3	156
27	The RAC Binding Domain/IRSp53-MIM Homology Domain of IRSp53 Induces RAC-dependent Membrane Deformation. Journal of Biological Chemistry, 2006, 281, 35347-35358.	1.6	155
28	PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nature Cell Biology, 2004, 6, 420-426.	4.6	210