
Antonio Simeone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8470876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct repression of <i>Nanog</i> and <i>Oct4</i> by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage. Development (Cambridge), 2021, 148, .	1.2	8
2	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	4.4	41
3	Developmental abnormalities in cortical GABAergic system in mice lacking mGlu3 metabotropic glutamate receptors. FASEB Journal, 2019, 33, 14204-14220.	0.2	5
4	Whole Exome Sequencing Study of Parkinson Disease and Related Endophenotypes in the Italian Population. Frontiers in Neurology, 2019, 10, 1362.	1.1	9
5	OTX2 restricts entry to the mouse germline. Nature, 2018, 562, 595-599.	13.7	52
6	Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death and Disease, 2018, 9, 937.	2.7	36
7	Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Molecular Psychiatry, 2017, 22, 680-688.	4.1	67
8	Functional Antagonism between OTX2 and NANOG Specifies a Spectrum ofÂHeterogeneous Identities in Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 1642-1659.	2.3	20
9	Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonic Stem Cell Subtypes and Specification of Inner Cell Mass-Derived Epiblast. Cell Reports, 2016, 15, 2651-2664.	2.9	59
10	Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons. Cell Reports, 2015, 13, 990-1002.	2.9	22
11	A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1 mice. Neurobiology of Disease, 2015, 82, 32-45.	2.1	38
12	Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset <i>In Vivo</i> and from Pluripotent Stem Cells <i>In Vitro</i> in the Mouse. Journal of Neuroscience, 2015, 35, 13385-13401.	1.7	30
13	FGF/FGFR2 Signaling Regulates the Generation and Correct Positioning of Bergmann Glia Cells in the Developing Mouse Cerebellum. PLoS ONE, 2014, 9, e101124.	1.1	18
14	Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development (Cambridge), 2014, 141, 377-388.	1.2	25
15	Increased dopaminergic innervation in the brain of conditional mutant mice overexpressing Otx2: Effects on locomotor behavior and seizure susceptibility. Neuroscience, 2014, 261, 173-183.	1.1	14
16	Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes. Human Molecular Genetics, 2014, 23, 1742-1753.	1.4	38
17	Sox6 and Otx2 Control the Specification of Substantia Nigra and Ventral Tegmental Area Dopamine Neurons. Cell Reports, 2014, 8, 1018-1025.	2.9	139
18	Reorganization of Enhancer Patterns in Transition from Naive to Primed Pluripotency. Cell Stem Cell, 2014, 14, 838-853.	5.2	421

#	Article	IF	CITATIONS
19	Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex. F1000Research, 2014, 3, 178.	0.8	10
20	Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. Developmental Biology, 2013, 373, 176-183.	0.9	44
21	Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development (Cambridge), 2013, 140, 43-55.	1.2	147
22	The transcription factor Otx2 regulates choroid plexus development and function. Development (Cambridge), 2013, 140, 1055-1066.	1.2	109
23	Embryonic defects and growth alteration in mice with homozygous disruption of the <i>Patz1</i> gene. Journal of Cellular Physiology, 2013, 228, 646-653.	2.0	29
24	The homeodomain factor <i>Gbx1</i> is required for locomotion and cell specification in the dorsal spinal cord. PeerJ, 2013, 1, e142.	0.9	7
25	The H3K27 Demethylase JMJD3 Is Required for Maintenance of the Embryonic Respiratory Neuronal Network, Neonatal Breathing, and Survival. Cell Reports, 2012, 2, 1244-1258.	2.9	94
26	Cellular Heterogeneity During Embryonic Stem Cell Differentiation to Epiblast Stem Cells Is Revealed by the ShcD/RaLP Adaptor Protein. Stem Cells, 2012, 30, 2423-2436.	1.4	21
27	Fgf15-mediated control of neurogenic and proneural gene expression regulates dorsal midbrain neurogenesis. Developmental Biology, 2011, 350, 496-510.	0.9	32
28	The Role of Otx2 in Adult Mesencephalic–Diencephalic Dopaminergic Neurons. Molecular Neurobiology, 2011, 43, 107-113.	1.9	30
29	<i>Otx</i> genes in neurogenesis of mesencephalic dopaminergic neurons. Developmental Neurobiology, 2011, 71, 665-679.	1.5	14
30	A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nature Neuroscience, 2010, 13, 680-689.	7.1	90
31	Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nature Neuroscience, 2010, 13, 1481-1488.	7.1	114
32	Otx2 expression is restricted to dopaminergic neurons of the ventral tegmental area in the adult brain. International Journal of Developmental Biology, 2010, 54, 939-945.	0.3	75
33	The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain, 2010, 133, 2022-2031.	3.7	47
34	Bmp5/7 in concert with the mid-hindbrain organizer control development of noradrenergic locus coeruleus neurons. Molecular and Cellular Neurosciences, 2010, 45, 1-11.	1.0	21
35	Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development (Cambridge), 2009, 136, 2545-2555.	1.2	67
36	<i>Foxg1</i> is required for proper separation and formation of sensory cristae during inner ear development. Developmental Dynamics, 2009, 238, 2725-2734.	0.8	56

#	Article	IF	CITATIONS
37	Selective inactivation of Otx2 mRNA isoforms reveals isoform-specific requirement for visceral endoderm anteriorization and head morphogenesis and highlights cell diversity in the visceral endoderm. Mechanisms of Development, 2009, 126, 882-897.	1.7	30
38	Expression of the Brain Transcription Factor OTX1 Occurs in a Subset of Normal Germinal-Center B Cells and in Aggressive Non-Hodgkin Lymphoma. American Journal of Pathology, 2009, 175, 2609-2617.	1.9	25
39	The Role of Otx Genes in Progenitor Domains of Ventral Midbrain. Advances in Experimental Medicine and Biology, 2009, 651, 36-46.	0.8	3
40	Orthopedia Homeodomain Protein Is Essential for Diencephalic Dopaminergic Neuron Development. Current Biology, 2008, 18, 310.	1.8	0
41	Serotonin Hyperinnervation Abolishes Seizure Susceptibility in <i>Otx2</i> Conditional Mutant Mice. Journal of Neuroscience, 2008, 28, 9271-9276.	1.7	26
42	Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. Development (Cambridge), 2008, 135, 3459-3470.	1.2	96
43	Gbx2 and Otx2 Interact with the WD40 Domain of Groucho/Tle Corepressors. Molecular and Cellular Biology, 2007, 27, 340-351.	1.1	45
44	Orthopedia Homeodomain Protein Is Essential for Diencephalic Dopaminergic Neuron Development. Current Biology, 2007, 17, 873-880.	1.8	192
45	The Brain Transcription Factor OTX1 Is Activated in Specific Non-Hodgkin Lymphoma Subtypes and Normally Expressed in a Germinal Center-Restricted Small Subpopulation of CD138+ Plasmacell-Like Cells Blood, 2007, 110, 2618-2618.	0.6	Ο
46	Altered dopaminergic innervation and amphetamine response in adult Otx2 conditional mutant mice. Molecular and Cellular Neurosciences, 2006, 31, 293-302.	1.0	29
47	Sp8 controls the anteroposterior patterning at the midbrain-hindbrain border. Development (Cambridge), 2006, 133, 1779-1787.	1.2	14
48	Otx2 Controls Identity and Fate of Glutamatergic Progenitors of the Thalamus by Repressing GABAergic Differentiation. Journal of Neuroscience, 2006, 26, 5955-5964.	1.7	62
49	Differentiation of cerebellar cell identities in absence of Fgf signalling in zebrafish Otx morphants. Development (Cambridge), 2006, 133, 1891-1900.	1.2	58
50	A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development (Cambridge), 2006, 133, 89-98.	1.2	219
51	Otx genes in the evolution of the vertebrate brain. Brain Research Bulletin, 2005, 66, 410-420.	1.4	49
52	Genetic control of dopaminergic neuron differentiation. Trends in Neurosciences, 2005, 28, 62-65.	4.2	51
53	Otx2 Regulates Subtype Specification and Neurogenesis in the Midbrain. Journal of Neuroscience, 2005, 25, 4856-4867.	1.7	133
54	Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development (Cambridge), 2004, 131, 2037-2048.	1.2	190

#	Article	IF	CITATIONS
55	Loss of Glutamatergic Pyramidal Neurons in Frontal and Temporal Cortex Resulting from Attenuation of FGFR1 Signaling Is Associated with Spontaneous Hyperactivity in Mice. Journal of Neuroscience, 2004, 24, 2247-2258.	1.7	77
56	Isolation and expression of the homeobox geneGbx1 during mouse development. Developmental Dynamics, 2004, 229, 334-339.	0.8	29
5 7	OTX1 compensates for OTX2 requirement in regionalisation of anterior neuroectoderm. Gene Expression Patterns, 2003, 3, 497-501.	0.3	22
58	Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nature Neuroscience, 2003, 6, 453-460.	7.1	129
59	Unsuspected role of the brain morphogenetic gene Otx1 in hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10299-10303.	3.3	8
60	Role of Otx transcription factors in brain development. Advances in Developmental Biology and Biochemistry, 2003, 13, 207-250.	0.3	0
61	Location and Size of Dopaminergic and Serotonergic Cell Populations Are Controlled by the Position of the Midbrain–Hindbrain Organizer. Journal of Neuroscience, 2003, 23, 4199-4207.	1.7	133
62	Folic acid prevents exencephaly in Cited2 deficient mice. Human Molecular Genetics, 2002, 11, 283-293.	1.4	145
63	Evolutionary conservation of otd/Otx2 transcription factor action: a genome-wide microarray analysis in Drosophila. Genome Biology, 2002, 3, research0015.1.	13.9	23
64	The paired-type homeobox gene Dmbx1 marks the midbrain and pretectum. Mechanisms of Development, 2002, 114, 213-217.	1.7	28
65	The Otx family. Current Opinion in Genetics and Development, 2002, 12, 409-415.	1.5	111
66	Morphological organization of somatosensory cortex in Otx1â^'/â^' mice. Neuroscience, 2002, 115, 657-667.	1.1	17
67	Towards the comprehension of genetic mechanisms controlling brain morphogenesis. Trends in Neurosciences, 2002, 25, 119-121.	4.2	18
68	Otx genes in brain morphogenesis. Progress in Neurobiology, 2001, 64, 69-95.	2.8	97
69	Otxgenes in the development and evolution of the vertebrate brain. International Journal of Developmental Neuroscience, 2001, 19, 353-363.	0.7	40
70	Otx 1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Development Genes and Evolution, 2001, 211, 388-396.	0.4	83
71	Otx genes in evolution: are they involved in instructing the vertebrate brain morphology?. Journal of Anatomy, 2001, 199, 53-62.	0.9	5
72	Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1533-1544.	1.8	86

#	Article	IF	CITATIONS
73	Combination of Paclitaxel and Etoposide in the Treatment of Advanced Non-Small Cell Lung Cancer: A Phase I-II Study. Journal of Chemotherapy, 2001, 13, 88-92.	0.7	1
74	Otx genes are required for tissue specification in the developing eye. Development (Cambridge), 2001, 128, 2019-2030.	1.2	238
75	Forebrain and midbrain development requires epiblast-restricted <i>Otx2</i> translational control mediated by its 3′ UTR. Development (Cambridge), 2001, 128, 2989-3000.	1.2	31
76	Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development (Cambridge), 2001, 128, 4789-4800.	1.2	106
77	OTD/OTX2 functional equivalence depends on 5′ and 3′ UTR-mediated control ofOtx2mRNA for nucleo-cytoplasmic export and epiblast-restricted translation. Development (Cambridge), 2001, 128, 4801-4813.	1.2	39
78	Otx genes in evolution: are they involved in instructing the vertebrate brain morphology?. Journal of Anatomy, 2001, 199, 53-62.	0.9	3
79	Positioning the isthmic organizer. Trends in Genetics, 2000, 16, 237-240.	2.9	168
80	Patterning of the mammalian cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11707-11713.	3.3	120
81	Genetic and molecular roles of Otx homeodomain proteins in head development. Gene, 2000, 246, 23-35.	1.0	32
82	Differential patterns of expression of Eps15 and Eps15R during mouse embryogenesis. Mechanisms of Development, 2000, 95, 309-312.	1.7	4
83	Otx Genes in Corticogenesis and Brain Development. Cerebral Cortex, 1999, 9, 533-542.	1.6	48
84	Conserved usage of gap and homeotic genes in patterning the CNS. Current Opinion in Neurobiology, 1999, 9, 589-595.	2.0	62
85	The TINS Lecture. Trends in Neurosciences, 1999, 22, 116-122.	4.2	83
86	Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mechanisms of Development, 1999, 81, 175-178.	1.7	84
87	OtxGenes and the Genetic Control of Brain Morphogenesis. Molecular and Cellular Neurosciences, 1999, 13, 1-7.	1.0	35
88	Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes and Development, 1999, 13, 2787-2800.	2.7	175
89	Embryonic expression pattern of the murine figf gene, a growth factor belonging to platelet-derived growth factor/vascular endothelial growth factor family. Mechanisms of Development, 1998, 73, 221-224.	1.7	56
90	Human NRD Convertase: A Highly Conserved Metalloendopeptidase Expressed at Specific Sites during Development and in Adult Tissues. Genomics, 1998, 47, 238-245.	1.3	40

#	Article	IF	CITATIONS
91	Identification and Characterization of a Novel RING-Finger Gene (RNF4) Mapping at 4p16.3. Genomics, 1998, 47, 258-265.	1.3	28
92	Cloning of the Human Interferon-Related Developmental Regulator (IFRD1) Gene Coding for the PC4 Protein, a Member of a Novel Family of Developmentally Regulated Genes. Genomics, 1998, 51, 233-242.	1.3	30
93	Otx1 and Otx2 in the development and evolution of the mammalian brain. EMBO Journal, 1998, 17, 6790-6798.	3.5	115
94	Developmental rescue of Drosophila cephalic defects by the human Otx genes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3737-3742.	3.3	79
95	Xrxl, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mechanisms of Development, 1997, 61, 187-198.	1.7	131
96	TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO Journal, 1997, 16, 3185-3197.	3.5	226
97	Retinoic Acid Induces Stage-Specific Repatterning of the Rostral Central Nervous System. Developmental Biology, 1996, 175, 347-357.	0.9	79
98	Uncoupling of Grb2 from the Met Receptor In Vivo Reveals Complex Roles in Muscle Development. Cell, 1996, 87, 531-542.	13.5	306
99	Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nature Genetics, 1996, 12, 94-96.	9.4	296
100	Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nature Genetics, 1996, 14, 218-222.	9.4	262
101	High level expression of the HMGI (Y) gene during embryonic development. Oncogene, 1996, 13, 2439-46.	2.6	252
102	Expression of runt in the mouse embryo. Developmental Dynamics, 1995, 203, 61-70.	0.8	73
103	Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mechanisms of Development, 1995, 51, 83-98.	1.7	143
104	Expression of the Neuron-Specific FE65 Gene Marks the Development of Embryo Ganglionic Derivatives. Developmental Neuroscience, 1994, 16, 53-60.	1.0	30
105	Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors Journal of Cell Biology, 1994, 127, 1743-1754.	2.3	128
106	Chromosome Locations of Human EMX and OTX Genes. Genomics, 1994, 22, 41-45.	1.3	61
107	Orthopedia, a novel homeobox-containing gene expressed in the developing CNS of both mouse and drosophila. Neuron, 1994, 13, 83-101.	3.8	185
108	Cloning and characterization of two members of the vertebrate Dlx gene family Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2250-2254.	3.3	270

#	Article	IF	CITATIONS
109	Differential DNA binding properties of three human homeodomain proteins. Nucleic Acids Research, 1992, 20, 4465-4472.	6.5	47
110	Nested expression domains of four homeobox genes in developing rostral brain. Nature, 1992, 358, 687-690.	13.7	755
111	Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mechanisms of Development, 1991, 33, 215-227.	1.7	289
112	EVX2, a human homeobox gene homologous to the even-skipped segmentation gene, is localized at the 5′ end of HOX4 locus on chromosome 2. Genomics, 1991, 10, 43-50.	1.3	82
113	HOX gene activation by retinoic acid. Trends in Genetics, 1991, 7, 329-334.	2.9	189
114	Isolation and mapping of EVx1, a human homeobox gene homologus toeven-skipped, localized at the 5′ end of Hox1 locus on chromosome 7. Nucleic Acids Research, 1991, 19, 6541-6545.	6.5	40
115	Identification and characterization of novel human endogenous retroviral sequences prefentially expressed in undifferentiated embryonal carcinoma cells. Nucleic Acids Research, 1991, 19, 1513-1520.	6.5	99
116	Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature, 1990, 346, 763-766.	13.7	527
117	Expression of HOX homeogenes in human neuroblastoma cell culture lines. Differentiation, 1990, 45, 61-69.	1.0	36
118	Human HOX genes are differentially activated by retinoic acid in embryonal carcinoma cells according to their position within the four loci. Cell Differentiation and Development, 1990, 31, 119-127.	0.4	62
119	Organization of human class I homeobox genes. Genome, 1989, 31, 745-756.	0.9	69
120	Differential expression of human HOX-2 genes along the anterior-posterior axis in embryonic central nervous system. Differentiation, 1989, 40, 191-197.	1.0	61
121	Three new class I HLA alleles: structure of mRNAs and alternative mechanisms of processing. Immunogenetics, 1989, 29, 80-91.	1.2	42
122	The human HOX gene family. Nucleic Acids Research, 1989, 17, 10385-10402.	6.5	334
123	Posttranscriptional control of human homeobox gene expression in induced NTERA-2 embryonal carcinoma cells. Molecular Reproduction and Development, 1989, 1, 107-115.	1.0	16
124	Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. Differentiation, 1988, 37, 73-79.	1.0	136
125	At least three human homeoboxes on chromosome 12 belong to the same transcription unit. Nucleic Acids Research, 1988, 16, 5379-5390.	6.5	113
126	Organization of human homeobox genes. Human Reproduction, 1988, 3, 880-886.	0.4	130

#	Article	IF	CITATIONS
127	Human homoeobox-containing genes in development. Human Reproduction, 1987, 2, 407-414.	0.4	24
128	Modulated expression of human homeobox genes in differentiating intestinal cells. Biochemical and Biophysical Research Communications, 1987, 146, 751-756.	1.0	7
129	Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4914-4918.	3.3	127
130	Transcribed homeogenes in man. Cell Biology International Reports, 1986, 10, 481.	0.7	2
131	A human homoeo box gene specifically expressed in spinal cord during embryonic development. Nature, 1986, 320, 763-765.	13.7	95
132	Differential and stage-related expression in embryonic tissues of a new human homoeobox gene. Nature, 1986, 324, 664-668.	13.7	208
133	Activation of major histocompatibility complex class I mRNA containing an Alu-like repeat in polyoma virus-transformed rat cells. Nature, 1985, 314, 457-459.	13.7	39
134	Nucleotide sequence of a complete ribosomal spacer ofD. melanogaster. Nucleic Acids Research, 1985, 13, 1089-1101.	6.5	67
135	Molecular analysis of the heterogeneity region of the human ribosomal spacer. Journal of Molecular Biology, 1985, 183, 213-223.	2.0	72
136	Human cDNA Clones Containing Homeo Box Sequences. Cold Spring Harbor Symposia on Quantitative Biology, 1985, 50, 301-306.	2.0	36
137	5′-Cleavage site of D. melanogaster 18 S rRNA. FEBS Letters, 1984, 167, 249-253.	1.3	3
138	An agarose gel resolving a wide range of DNA fragment lengths. Analytical Biochemistry, 1983, 134, 40-43.	1.1	19
139	Inheritance of the rDNA spacer in D. melanogaster. Molecular Genetics and Genomics, 1983, 189, 370-374.	2.4	21
140	Sequence organization of the ribosomal spacer ofD.melanogaster. Nucleic Acids Research, 1982, 10, 8263-8272.	6.5	41