Masao Kakoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/84707/publications.pdf Version: 2024-02-01

MASAO KAKOKI

#	Article	IF	CITATIONS
1	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 2503-2512.	3.0	582
2	Transforming growth factor-β1 and diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2016, 310, F689-F696.	1.3	147
3	Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proceedings of the United States of America, 2004, 101, 13302-13305.	3.3	118
4	Bradykinin B1 and B2 receptors both have protective roles in renal ischemia/reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7576-7581.	3.3	111
5	Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neuropathy, and bone mineral loss in Akita diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10190-10195.	3.3	111
6	Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. Journal of Clinical Investigation, 2006, 116, 1302-1309.	3.9	89
7	The kallikrein–kinin system in health and in diseases of the kidney. Kidney International, 2009, 75, 1019-1030.	2.6	86
8	Low TGFβ1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5815-5820.	3.3	77
9	The kallikrein–kinin system and oxidative stress. Current Opinion in Nephrology and Hypertension, 2012, 21, 92-96.	1.0	69
10	Effects of Tetrahydrobiopterin on Endothelial Dysfunction in Rats with Ischemic Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2000, 11, 301-309.	3.0	69
11	l-Arginine uptake affects nitric oxide production and blood flow in the renal medulla. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R1478-R1485.	0.9	60
12	Amino acids as modulators of endothelium-derived nitric oxide. American Journal of Physiology - Renal Physiology, 2006, 291, F297-F304.	1.3	59
13	The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension. Nature Communications, 2013, 4, 2910.	5.8	49
14	Altering the Expression in Mice of Genes by Modifying Their 3′ Regions. Developmental Cell, 2004, 6, 597-606.	3.1	48
15	Molecular Mechanisms of Endothelin-1–Induced Cell-Cycle Progression. Circulation Research, 1999, 84, 611-619.	2.0	42
16	The kallikrein–kinin system in diabetic nephropathy. Kidney International, 2012, 81, 733-744.	2.6	42
17	Endothelin-1 critically influences cardiac function via superoxide-MMP9 cascade. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5141-5146.	3.3	42
18	High Elmo1 expression aggravates and low Elmo1 expression prevents diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2218-2222.	3.3	41

Masao Κακοκι

#	Article	IF	CITATIONS
19	Primary aldosteronism and impaired natriuresis in mice underexpressing TGFβ1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5600-5605.	3.3	30
20	Prolactin alters blood pressure by modulating the activity of endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12538-12543.	3.3	27
21	Effects of Vasodilatory Antihypertensive Agents on Endothelial Dysfunction in Rats with Ischemic Acute Renal Failure Hypertension Research, 2000, 23, 527-533.	1.5	25
22	Loss of Bradykinin Signaling Does Not Accelerate the Development of Cardiac Dysfunction in Type 1 Diabetic Akita Mice. Endocrinology, 2010, 151, 3536-3542.	1.4	17
23	The Role of Transforming Growth Factor β1 in the Regulation of Blood Pressure. Current Hypertension Reviews, 2015, 10, 223-238.	0.5	16
24	Causative Effects of Genetically Determined High Maternal/Fetal Endothelin-1 on Preeclampsia-Like Conditions in Mice. Hypertension, 2018, 71, 894-903.	1.3	13
25	Transforming growth factor beta1 and aldosterone. Current Opinion in Nephrology and Hypertension, 2015, 24, 139-144.	1.0	12
26	Null mutations at the p66 and bradykinin 2 receptor loci induce divergent phenotypes in the diabetic kidney. American Journal of Physiology - Renal Physiology, 2012, 303, F1629-F1640.	1.3	11
27	Engulfment and cell motility protein 1 potentiates diabetic cardiomyopathy via Rac-dependent and Rac-independent ROS production. JCI Insight, 2019, 4, .	2.3	11
28	Kinin B1 Receptor Is Important in the Pathogenesis of Myeloperoxidase-Specific ANCA GN. Journal of the American Society of Nephrology: JASN, 2020, 31, 297-307.	3.0	10
29	GRAF3 serves as a blood volume-sensitive rheostat to control smooth muscle contractility and blood pressure. Small CTPases, 2017, 11, 1-10.	0.7	7
30	Cyanocobalamin prevents cardiomyopathy in type 1 diabetes by modulating oxidative stress and DNMT-SOCS1/3-IGF-1 signaling. Communications Biology, 2021, 4, 775.	2.0	5
31	17 Kallikrein-kinin system in diabetes. , 2011, , 273-288.		0