
Oriana Tabarrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8470680/publications.pdf Version: 2024-02-01

ODIANA TABADDINI

#	Article	IF	CITATIONS
1	Triazolopyrimidine Nuclei: Privileged Scaffolds for Developing Antiviral Agents with a Proper Pharmacokinetic Profile. Current Medicinal Chemistry, 2022, 29, 1379-1407.	1.2	3
2	Potent 2,3-dihydrophthalazine-1,4-dione derivatives as dual inhibitors for mono-ADP-ribosyltransferases PARP10 and PARP15. European Journal of Medicinal Chemistry, 2022, 237, 114362.	2.6	5
3	Discovery of 2-Phenylquinolines with Broad-Spectrum Anti-coronavirus Activity. ACS Medicinal Chemistry Letters, 2022, 13, 855-864.	1.3	10
4	Medicinal Chemistry Perspective on Targeting Mono-ADP-Ribosylating PARPs with Small Molecules. Journal of Medicinal Chemistry, 2022, 65, 7532-7560.	2.9	18
5	Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. European Journal of Medicinal Chemistry, 2021, 210, 112992.	2.6	6
6	Inhibition of Influenza Virus Polymerase by Interfering with Its Protein–Protein Interactions. ACS Infectious Diseases, 2021, 7, 1332-1350.	1.8	18
7	Synthesis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. European Journal of Medicinal Chemistry, 2021, 209, 112944.	2.6	17
8	From Quinoline to Quinazolineâ€Based S. aureus NorA Efflux Pump Inhibitors by Coupling a Focused Scaffold Hopping Approach and a Pharmacophore Search. ChemMedChem, 2021, 16, 3044-3059.	1.6	9
9	1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. European Journal of Medicinal Chemistry, 2021, 221, 113494.	2.6	15
10	Structural Modifications of the Quinolin-4-yloxy Core to Obtain New Staphylococcus aureus NorA Inhibitors. International Journal of Molecular Sciences, 2020, 21, 7037.	1.8	8
11	Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. European Journal of Medicinal Chemistry, 2020, 201, 112420.	2.6	12
12	1,2,4-Triazolo[1,5-a]pyrimidines as a Novel Class of Inhibitors of the HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. Molecules, 2020, 25, 1183.	1.7	23
13	Pyridobenzothiazolones Exert Potent Anti-Dengue Activity by Hampering Multiple Functions of NS5 Polymerase. ACS Medicinal Chemistry Letters, 2020, 11, 773-782.	1.3	28
14	C-2 phenyl replacements to obtain potent quinoline-based <i>Staphylococcus aureus</i> NorA inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 584-597.	2.5	13
15	Discovery of potent p38α MAPK inhibitors through a funnel like workflow combining in silico screening and inÂvitro validation. European Journal of Medicinal Chemistry, 2019, 182, 111624.	2.6	17
16	Potent and broad-spectrum cycloheptathiophene-3-carboxamide compounds that target the PA-PB1 interaction of influenza virus RNA polymerase and possess a high barrier to drug resistance. Antiviral Research, 2019, 165, 55-64.	1.9	20
17	Modifications on C6 and C7 Positions of 3-Phenylquinolone Efflux Pump Inhibitors Led to Potent and Safe Antimycobacterial Treatment Adjuvants. ACS Infectious Diseases, 2019, 5, 982-1000.	1.8	10
18	Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Research, 2019, 167, 6-12.	1.9	24

#	Article	IF	CITATIONS
19	From cycloheptathiophene-3-carboxamide to oxazinone-based derivatives as allosteric HIV-1 ribonuclease H inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 55-74.	2.5	16
20	Design and Synthesis of WM5 Analogues as HIV-1 TAR RNA Binders. Open Medicinal Chemistry Journal, 2019, 13, 16-28.	0.9	2
21	Reducing Mutant Huntingtin Protein Expression in Living Cells by a Newly Identified RNA CAG Binder. ACS Chemical Neuroscience, 2018, 9, 1399-1408.	1.7	29
22	2-Phenylquinazolinones as dual-activity tankyrase-kinase inhibitors. Scientific Reports, 2018, 8, 1680.	1.6	16
23	NCp7: targeting a multitasking protein for next-generation anti-HIV drug development part 1: covalent inhibitors. Drug Discovery Today, 2018, 23, 260-271.	3.2	46
24	Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. European Journal of Medicinal Chemistry, 2018, 143, 1667-1676.	2.6	24
25	4-(Phenoxy) and 4-(benzyloxy)benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10. European Journal of Medicinal Chemistry, 2018, 156, 93-102.	2.6	23
26	2-Phenylquinoline <i>S. aureus</i> NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction. Journal of Medicinal Chemistry, 2018, 61, 7827-7848.	2.9	46
27	Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position. European Journal of Medicinal Chemistry, 2018, 155, 428-433.	2.6	19
28	Pharmacophore-Based Repositioning of Approved Drugs as Novel <i>Staphylococcus aureus</i> NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 1598-1604.	2.9	59
29	Searching for Novel Inhibitors of the <i>S. aureus</i> NorA Efflux Pump: Synthesis and Biological Evaluation of the 3â€Phenylâ€1,4â€benzothiazine Analogues. ChemMedChem, 2017, 12, 1293-1302.	1.6	28
30	Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity. European Journal of Medicinal Chemistry, 2017, 138, 128-139.	2.6	38
31	Halogen Bonding in Nucleic Acid Complexes. Journal of Medicinal Chemistry, 2017, 60, 8681-8690.	2.9	51
32	Efficient and regioselective one-step synthesis of 7-aryl-5-methyl- and 5-aryl-7-methyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidine derivatives. Organic and Biomolecular Chemistry, 2017, 15, 7944-7955.	1.5	31
33	Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. European Journal of Medicinal Chemistry, 2017, 140, 321-330.	2.6	28
34	Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against <i>Escherichia coli</i> . PeerJ, 2017, 5, e3168.	0.9	38
35	Studies on Cycloheptathiopheneâ€3â€carboxamide Derivatives as Allosteric HIVâ€1 Ribonucleaseâ€H Inhibitors ChemMedChem, 2016, 11, 1709-1720.	1.6	15
36	Polymerase Acidic Protein–Basic Protein 1 (PA–PB1) Protein–Protein Interaction as a Target for Next-Generation Anti-influenza Therapeutics. Journal of Medicinal Chemistry, 2016, 59, 7699-7718.	2.9	43

#	Article	IF	CITATIONS
37	Drug Repurposing Approach Identifies Inhibitors of the Prototypic Viral Transcription Factor IE2 that Block Human Cytomegalovirus Replication. Cell Chemical Biology, 2016, 23, 340-351.	2.5	32
38	Recent advances in the identification of Tat-mediated transactivation inhibitors: progressing toward a functional cure of HIV. Future Medicinal Chemistry, 2016, 8, 421-442.	1.1	12
39	The Pyrazolobenzothiazine Core as a New Chemotype of p38 Alpha Mitogenâ€Activated Protein Kinase Inhibitors. Chemical Biology and Drug Design, 2015, 86, 531-545.	1.5	14
40	Boosting Effect of 2-Phenylquinoline Efflux Inhibitors in Combination with Macrolides against <i>Mycobacterium smegmatis</i> and <i>Mycobacterium avium</i> . ACS Infectious Diseases, 2015, 1, 593-603.	1.8	21
41	A Broad Anti-influenza Hybrid Small Molecule That Potently Disrupts the Interaction of Polymerase Acidic Protein–Basic Protein 1 (PA-PB1) Subunits. Journal of Medicinal Chemistry, 2015, 58, 3830-3842.	2.9	81
42	Molecular View of Ligands Specificity for CAG Repeats in Anti-Huntington Therapy. Journal of Chemical Theory and Computation, 2015, 11, 4911-4922.	2.3	15
43	Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) Inhibitors with anti-HIV Activity. Journal of Medicinal Chemistry, 2015, 58, 9601-9614.	2.9	175
44	Modulation of HIV-1-Induced Activation of Plasmacytoid Dendritic Cells by 6-Desfluoroquinolones. AIDS Research and Human Retroviruses, 2014, 30, 345-354.	0.5	3
45	Accounting for Target Flexibility and Water Molecules by Docking to Ensembles of Target Structures: The HCV NS5B Palm Site I Inhibitors Case Study. Journal of Chemical Information and Modeling, 2014, 54, 481-497.	2.5	16
46	New Pyrazolobenzothiazine Derivatives as Hepatitis C Virus NS5B Polymerase Palm Site I Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3247-3262.	2.9	35
47	The Versatile Nature of the 6-Aminoquinolone Scaffold: Identification of Submicromolar Hepatitis C Virus NS5B Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1952-1963.	2.9	43
48	Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Bioorganic and Medicinal Chemistry, 2014, 22, 4658-4666.	1.4	19
49	Ethyl 1,8-Naphthyridone-3-carboxylates Downregulate Human Papillomavirus-16 E6 and E7 Oncogene Expression. Journal of Medicinal Chemistry, 2014, 57, 5649-5663.	2.9	9
50	The 6-Aminoquinolone WC5 Inhibits Different Functions of the Immediate-Early 2 (IE2) Protein of Human Cytomegalovirus That Are Essential for Viral Replication. Antimicrobial Agents and Chemotherapy, 2014, 58, 6615-6626.	1.4	15
51	1,4-Benzothiazine ATP-Sensitive Potassium Channel Openers: Modifications at the C-2 and C-6 Positions. Journal of Medicinal Chemistry, 2013, 56, 4718-4728.	2.9	20
52	Structural Investigation of Cycloheptathiophene-3-carboxamide Derivatives Targeting Influenza Virus Polymerase Assembly. Journal of Medicinal Chemistry, 2013, 56, 10118-10131.	2.9	51
53	Computerâ€Aided Design, Synthesis and Validation of 2â€Phenylquinazolinone Fragments as CDK9 Inhibitors with Antiâ€HIVâ€1 Tatâ€Mediated Transcription Activity. ChemMedChem, 2013, 8, 1941-1953.	1.6	32
54	Structure-Based Discovery of Pyrazolobenzothiazine Derivatives As Inhibitors of Hepatitis C Virus Replication. Journal of Medicinal Chemistry, 2013, 56, 2270-2282.	2.9	40

#	Article	IF	CITATIONS
55	Re-evolution of the 2-Phenylquinolines: Ligand-Based Design, Synthesis, and Biological Evaluation of a Potent New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors to Combat Antimicrobial Resistance. Journal of Medicinal Chemistry, 2013, 56, 4975-4989.	2.9	51
56	Design, Synthesis, and Evaluation of WC5 Analogues as Inhibitors of Human Cytomegalovirus Immediateâ€Earlyâ€2 Protein, a Promising Target for Antiâ€HCMV Treatment. ChemMedChem, 2013, 8, 1403	3-1414.	18
57	From Small to Powerful: The Fragments Universe and its "Chem-Appeal". Current Medicinal Chemistry, 2013, 20, 1355-1381.	1.2	17
58	Blocking HIV-1 Replication by Targeting the Tat-Hijacked Transcriptional Machinery. Current Pharmaceutical Design, 2013, 19, 1860-1879.	0.9	31
59	6â€Hydrogenâ€8â€Methylquinolones Active Against Replicating and Nonâ€replicating <i>Mycobacterium tuberculosis</i> . Chemical Biology and Drug Design, 2012, 80, 781-786.	1.5	13
60	Pyrazolo[4,3- <i>c</i>][1,2]benzothiazines 5,5-Dioxide: A Promising New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 3568-3572.	2.9	82
61	Searching for innovative quinolone-like scaffolds: synthesis and biological evaluation of 2,1-benzothiazine 2,2-dioxide derivatives. MedChemComm, 2012, 3, 1092.	3.5	20
62	Evolution from a Natural Flavones Nucleus to Obtain 2-(4-Propoxyphenyl)quinoline Derivatives As Potent Inhibitors of the <i>S. aureus</i> NorA Efflux Pump. Journal of Medicinal Chemistry, 2011, 54, 5722-5736.	2.9	102
63	Synthesis and chromatographic enantioresolution of anti-HIV quinolone derivatives. Talanta, 2011, 85, 1392-1397.	2.9	27
64	Structural Investigation of the Naphthyridone Scaffold: Identification of a 1,6â€Naphthyridone Derivative with Potent and Selective Antiâ€HIV Activity. ChemMedChem, 2011, 6, 1249-1257.	1.6	30
65	Studies of Antiâ€HIV Transcription Inhibitor Quinolones: Identification of Potent N1â€Vinyl Derivatives. ChemMedChem, 2010, 5, 1880-1892.	1.6	26
66	Inside Cover: Studies of Anti-HIV Transcription Inhibitor Quinolones: Identification of Potent N1-Vinyl Derivatives (ChemMedChem 11/2010). ChemMedChem, 2010, 5, 1798-1798.	1.6	0
67	The 6-Aminoquinolone WC5 Inhibits Human Cytomegalovirus Replication at an Early Stage by Interfering with the Transactivating Activity of Viral Immediate-Early 2 Protein. Antimicrobial Agents and Chemotherapy, 2010, 54, 1930-1940.	1.4	29
68	6-desfluoroquinolones as HIV-1 Tat-mediated transcription inhibitors. Future Medicinal Chemistry, 2010, 2, 1161-1180.	1.1	28
69	A 1,8-Naphthyridone Derivative Targets the HIV-1 Tat-Mediated Transcription and Potently Inhibits the HIV-1 Replication. Journal of Medicinal Chemistry, 2010, 53, 641-648.	2.9	122
70	A 6-Aminoquinolone Compound, WC5, with Potent and Selective Anti-Human Cytomegalovirus Activity. Antimicrobial Agents and Chemotherapy, 2009, 53, 312-315.	1.4	25
71	Synthesis of 2-(Arylamino)ethanethiols via Lewis Acid Catalyzed Aminolysis of 2,2-Dimethylthiirane as Precursors of the 1,4-Benzothiazine Nucleus. Synthesis, 2009, 2009, 1513-1519.	1.2	2
72	2â€Phenylquinolones as Inhibitors of the HIVâ€1 Tat–TAR Interaction. ChemMedChem, 2009, 4, 935-938.	1.6	18

#	Article	IF	CITATIONS
73	Studies on anti-HIV quinolones: New insights on the C-6 position. Bioorganic and Medicinal Chemistry, 2009, 17, 667-674.	1.4	32
74	Synthesis and biological evaluation of 2-phenylquinolones targeted at Tat/TAR recognition. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 714-717.	1.0	21
75	Inhibition of Subgenomic Hepatitis C Virus RNA Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor. Journal of Medicinal Chemistry, 2009, 52, 3354-3365.	2.9	54
76	Comparative In Vitro Anti-Hepatitis C Virus Activities of a Selected Series of Polymerase, Protease, and Helicase Inhibitors. Antimicrobial Agents and Chemotherapy, 2008, 52, 3433-3437.	1.4	43
77	Structureâ^'Activity Relationship Study on Anti-HIV 6-Desfluoroquinolones. Journal of Medicinal Chemistry, 2008, 51, 5454-5458.	2.9	56
78	Novel 1,4-Benzothiazine Derivatives as Large Conductance Ca2+-Activated Potassium Channel Openers. Journal of Medicinal Chemistry, 2008, 51, 5085-5092.	2.9	29
79	Novel In Vivo Model for the Study of Human Immunodeficiency Virus Type 1 Transcription Inhibitors: Evaluation of New 6-Desfluoroquinolone Derivatives. Antimicrobial Agents and Chemotherapy, 2007, 51, 1407-1413.	1.4	19
80	Synthesis and Anti-BVDV Activity of Acridones As New Potential Antiviral Agents1. Journal of Medicinal Chemistry, 2006, 49, 2621-2627.	2.9	71
81	From Cromakalim to Different Structural Classes of KATP Channel Openers. Current Topics in Medicinal Chemistry, 2006, 6, 1049-1068.	1.0	19
82	Inhibition of cell growth and induction of apoptosis in human prostate cancer cell lines by 6-aminoquinolone WM13. Oncology Reports, 2005, 13, 1113.	1.2	0
83	Binding studies and GRIND/ALMOND-based 3D QSAR analysis of benzothiazine type KATP-channel openers. Bioorganic and Medicinal Chemistry, 2005, 13, 5581-5591.	1.4	21
84	Antiviral 6-amino-quinolones: Molecular basis for potency and selectivity. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4247-4251.	1.0	17
85	A Novel and Efficient Approach to Discriminate between Pre- and Post-Transcription HIV Inhibitors. Molecular Pharmacology, 2005, 67, 1574-1580.	1.0	18
86	Cell-dependent interference of a series of new 6-aminoquinolone derivatives with viral (HIV/CMV) transactivation. Journal of Antimicrobial Chemotherapy, 2005, 56, 847-855.	1.3	50
87	Structure Modifications of 6-Aminoquinolones with Potent Anti-HIV Activity1. Journal of Medicinal Chemistry, 2004, 47, 5567-5578.	2.9	45
88	Highly Potent 1,4-Benzothiazine Derivatives as KATP-Channel Openers. Journal of Medicinal Chemistry, 2003, 46, 3670-3679.	2.9	48
89	QSAR study and VolSurf characterization of anti-HIV quinolone library. Journal of Computer-Aided Molecular Design, 2001, 15, 203-217.	1.3	21
90	Velnacrine thiaanalogues as potential agents for treating alzheimer's disease. Bioorganic and Medicinal Chemistry, 2001, 9, 2921-2928.	1.4	16

#	Article	IF	CITATIONS
91	(1,4-Benzothiazinyloxy)alkylpiperazine derivatives as potential antihypertensive agents. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 465-468.	1.0	34
92	Chemometric rationalization of the structural and physicochemical basis for selective cyclooxygenase-2 inhibition: toward more specific ligands. Journal of Computer-Aided Molecular Design, 2000, 14, 277-291.	1.3	18
93	6-Hydroxy Derivative as New Desfluoroquinolone (DFQ): Synthesis and DNA-Binding Study. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1327-1336.	0.4	2
94	6-Aminoquinolones as New Potential Anti-HIV Agents. Journal of Medicinal Chemistry, 2000, 43, 3799-3802.	2.9	105
95	Studies on 6-Aminoquinolones: synthesis and antibacterial evaluation of 6-amino-8-ethyl- and 6-amino-8-methoxyquinolones. Bioorganic and Medicinal Chemistry, 1999, 7, 2465-2471.	1.4	19
96	8â€Methylâ€7â€substitutedâ€1,6â€naphthyridineâ€3â€carboxylic acids as New 6â€desfluoroquinolone antibact Journal of Heterocyclic Chemistry, 1999, 36, 953-957.	erials. 1.4	6
97	Design and Synthesis of Modified Quinolones as Antitumoral Acridones. Journal of Medicinal Chemistry, 1999, 42, 2136-2144.	2.9	34
98	Dibenzo[1,6]naphthyridindiones as modified quinolone antibacterials. European Journal of Medicinal Chemistry, 1998, 33, 899-903.	2.6	8
99	Chemometric Methodologies in a Quantitative Structureâ^ Activity Relationship Study:Â The Antibacterial Activity of 6-Aminoquinolones. Journal of Medicinal Chemistry, 1997, 40, 1698-1706.	2.9	21
100	Synthesis and antibacterial evaluation of [1,3]benzothiazino[3,2-a]quinoline- and [3,1]benzothiazino[1,2-a]quinoline-6-carboxylic acid derivatives. Bioorganic and Medicinal Chemistry, 1997, 5, 1339-1344.	1.4	22
101	Studies on 6-Aminoquinolones:Â Synthesis and Antibacterial Evaluation of 6-Amino-8-methylquinolones1. Journal of Medicinal Chemistry, 1996, 39, 436-445.	2.9	73
102	Potent 6-Desfluoro-8-methylquinolones as New Lead Compounds in Antibacterial Chemotherapy1. Journal of Medicinal Chemistry, 1996, 39, 4952-4957.	2.9	54
103	6-Aminoquinolones: A New Class of Quinolone Antibacterials?. Journal of Medicinal Chemistry, 1995, 38, 973-982.	2.9	51
104	7-(Disubstituted thiazolyl)-3,5-dihydroxy-6-heptenoic/heptanoic acid derivatives as HMG-COa reductase inhibitors. Bioorganic and Medicinal Chemistry, 1994, 2, 799-806.	1.4	0
105	4 <i>H</i> â€lâ€benzothiopyranâ€4â€oneâ€3â€carboxylic acids and 3,4â€dihydroâ€2 <i>H</i> â€isothiazolo[5,4â€ <i>b</i> benzothiopyranâ€3,4â€diones as quinolone antibacterial analogs. Journal of Heterocyclic Chemistry, 1993, 30, 1143-1148.	1.4	15
106	o-Chlorobenzenesulfonamidic derivatives of (aryloxy)propanolamines as .betablocking/diuretic agents. Journal of Medicinal Chemistry, 1993, 36, 157-161.	2.9	25
107	Quinolinecarboxylic acids. 3. Synthesis and antibacterial evaluation of 2-substituted 7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de][1,4]benzothiazine-6-carboxylic acids related to rufloxacin. Journal of Medicinal Chemistry, 1993, 36, 3449-3454.	2.9	18
108	1,4â€Benzothiazineâ€2 arboxylic acid 1â€oxides as analogues of antibacterial quinolones. Journal of Heterocyclic Chemistry, 1992, 29, 375-382.	1.4	19