M A Hossain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8469747/publications.pdf

Version: 2024-02-01

713444 567247 1,021 21 15 21 citations h-index g-index papers 21 21 21 1730 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Carrier Generation and Collection in CdS/CdSe-Sensitized SnO ₂ Solar Cells Exhibiting Unprecedented Photocurrent Densities. ACS Nano, 2011, 5, 3172-3181.	14.6	243
2	CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. Journal of Materials Chemistry, 2012, 22, 16235.	6.7	140
3	Mesoporous SnO ₂ Spheres Synthesized by Electrochemical Anodization and Their Application in CdSe-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 21878-21884.	3.1	75
4	Controlled growth of Cu2O thin films by electrodeposition approach. Materials Science in Semiconductor Processing, 2017, 63, 203-211.	4.0	74
5	Enhanced Heterojunction Interface Quality To Achieve 9.3% Efficient Cd-Free Cu ₂ ZnSnS ₄ Solar Cells Using Atomic Layer Deposition ZnSnO Buffer Layer. Chemistry of Materials, 2018, 30, 7860-7871.	6.7	66
6	PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing. Physical Chemistry Chemical Physics, 2012, 14, 7367.	2.8	59
7	Characteristics of p-NiO Thin Films Prepared by Spray Pyrolysis and Their Application in CdS-sensitized Photocathodes. Journal of the Electrochemical Society, 2011, 158, H733.	2.9	56
8	15% Efficiency Ultrathin Silicon Solar Cells with Fluorine-Doped Titanium Oxide and Chemically Tailored Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Asymmetric Heterocontact. ACS Nano, 2019, 13, 6356-6362.	14.6	53
9	Band engineered ternary solid solution CdSxSe1â^'x-sensitized mesoscopic TiO2 solar cells. Physical Chemistry Chemical Physics, 2012, 14, 7154.	2.8	47
10	Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials Science, 2020, 2, 204-226.	8.8	44
11	Conformal growth of nanocrystalline CdX (X = S, Se) on mesoscopic NiO and their photoelectrochemical properties. Physical Chemistry Chemical Physics, 2013, 15, 4767.	2.8	31
12	Interfacial Kinetics and Ionic Diffusivity of the Electrodeposited MoS ₂ Film. ACS Applied Materials & Interfaces, 2018, 10, 13509-13518.	8.0	27
13	Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se) ₂ Thin Film Solar Cells. ACS Applied Materials & Deposition of 22497-22503.	8.0	25
14	Highâ€Efficiency Nonfullerene Organic Solar Cells Enabled by Atomic Layer Deposited Zirconiumâ€Doped Zinc Oxide. Solar Rrl, 2020, 4, 2000241.	5.8	18
15	Atomic layer deposited ZnxNi1â^xC: A thermally stable hole selective contact for silicon solar cells. Applied Physics Letters, 2018, 113, .	3.3	17
16	Interface Modification Enabled by Atomic Layer Deposited Ultraâ€Thin Titanium Oxide for Highâ€Efficiency and Semitransparent Organic Solar Cells. Solar Rrl, 2020, 4, 2000497.	5.8	15
17	Doped Nickel Oxide Carrier-Selective Contact for Silicon Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 1176-1187.	2.5	10
18	Catalyst-free synthesis of ZnO-CuO-ZnFe2O4 nanocomposites by a rapid one-step thermal decomposition approach. Materials Science in Semiconductor Processing, 2019, 90, 41-49.	4.0	8

#	Article	IF	CITATIONS
19	Impact of Pregrown SiO _{<i>x</i>} on the Carrier Selectivity and Thermal Stability of Molybdenum-Oxide-Passivated Contact for Si Solar Cells. ACS Applied Materials & Diterfaces, 2021, 13, 36426-36435.	8.0	8
20	Designing 3d metal oxides: selecting optimal density functionals for strongly correlated materials. Physical Chemistry Chemical Physics, 2022, 24, 14119-14139.	2.8	4
21	Optimized Ni _{1â^'x} Al _x O hole transport layer for silicon solar cells. RSC Advances, 2020, 10, 22377-22386.	3.6	1