## Jiong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8469685/publications.pdf Version: 2024-02-01



LIONG WANG

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Tuning the reversible chemisorption of hydroxyl ions to promote the electrocatalysis on ultrathin metal-organic framework nanosheets. Journal of Energy Chemistry, 2022, 65, 71-77.                                       | 7.1 | 17        |
| 2  | Insights into Tuning of Moâ€Based Structures toward Enhanced Electrocatalytic Performance of<br>Nitrogenâ€ŧoâ€Ammonia Conversion. Advanced Energy and Sustainability Research, 2022, 3, .                                 | 2.8 | 3         |
| 3  | Structural Evolution and Underlying Mechanism of Single-Atom Centers on Mo2C(100) Support<br>during Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 17075-17084.                                 | 4.0 | 4         |
| 4  | Structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion.<br>Science Advances, 2021, 7, .                                                                                             | 4.7 | 48        |
| 5  | Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angewandte Chemie, 2020, 132, 19324-19329.                                                  | 1.6 | 11        |
| 6  | Innenrücktitelbild: Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced<br>Electron Transfer for Carbon Dioxide Reduction (Angew. Chem. 43/2020). Angewandte Chemie, 2020,<br>132, 19527-19527. | 1.6 | 0         |
| 7  | Ethylene Selectivity in Electrocatalytic CO <sub>2</sub> Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. Journal of the American Chemical Society, 2020, 142, 12760-12766.                                | 6.6 | 183       |
| 8  | A new strategy to immobilize molecular Fe sites into a cationic polymer to fabricate an oxygen reduction catalyst. Electrochemistry Communications, 2020, 117, 106781.                                                    | 2.3 | 1         |
| 9  | Unraveling the oxide layer on Mo2C as the active center for hydrogen evolution reaction. Journal of Catalysis, 2020, 389, 461-467.                                                                                        | 3.1 | 38        |
| 10 | Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2020, 59, 19162-19167.                           | 7.2 | 64        |
| 11 | Incorporation of single cobalt active sites onto N-doped graphene for superior conductive membranes in electrochemical filtration. Journal of Membrane Science, 2020, 602, 117966.                                        | 4.1 | 20        |
| 12 | Investigation of Structural Evolution of SnO 2 Nanosheets towards Electrocatalytic CO 2 Reduction.<br>Chemistry - an Asian Journal, 2020, 15, 1558-1561.                                                                  | 1.7 | 13        |
| 13 | Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO <sub>2</sub> Reduction. Angewandte Chemie - International Edition, 2019, 58, 13532-13539.                            | 7.2 | 143       |
| 14 | Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO <sub>2</sub> Reduction. Angewandte Chemie, 2019, 131, 13666-13673.                                                   | 1.6 | 24        |
| 15 | Boosting Electrochemical CO <sub>2</sub> Reduction on Metal–Organic Frameworks via Ligand<br>Doping. Angewandte Chemie, 2019, 131, 4081-4085.                                                                             | 1.6 | 66        |
| 16 | Boosting Electrochemical CO <sub>2</sub> Reduction on Metal–Organic Frameworks via Ligand<br>Doping. Angewandte Chemie - International Edition, 2019, 58, 4041-4045.                                                      | 7.2 | 199       |
| 17 | An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces.<br>Chemical Science, 2019, 10, 3340-3345.                                                                                    | 3.7 | 63        |
| 18 | Multifunctional Piezoelectric Heterostructure of BaTiO <sub>3</sub> @Graphene: Decomplexation of Cu-EDTA and Recovery of Cu. Environmental Science & (amp; Technology, 2019, 53, 8342-8351.                               | 4.6 | 70        |

JIONG WANG

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Efficient Electrochemical Reduction of CO <sub>2</sub> to HCOOH over Subâ€2â€nm SnO <sub>2</sub><br>Quantum Wires with Exposed Grain Boundaries. Angewandte Chemie, 2019, 131, 8587-8591.                           | 1.6  | 38        |
| 20 | Efficient Electrochemical Reduction of CO <sub>2</sub> to HCOOH over Subâ€2â€nm SnO <sub>2</sub><br>Quantum Wires with Exposed Grain Boundaries. Angewandte Chemie - International Edition, 2019, 58,<br>8499-8503. | 7.2  | 322       |
| 21 | A Waterâ€Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO <sub>2</sub> Reduction<br>on Grapheneâ€Based Electrodes. Advanced Energy Materials, 2019, 9, 1803151.                                     | 10.2 | 85        |
| 22 | In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Science Advances, 2018, 4, eaap7970.                                     | 4.7  | 176       |
| 23 | Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites.<br>Journal of the American Chemical Society, 2017, 139, 1878-1884.                                                  | 6.6  | 129       |
| 24 | Recent Methods for the Synthesis of Noble-Metal-Free Hydrogen-Evolution Electrocatalysts: From Nanoscale to Sub-nanoscale. Small Methods, 2017, 1, 1700118.                                                         | 4.6  | 96        |
| 25 | Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting. ACS Nano,<br>2017, 11, 11031-11040.                                                                                         | 7.3  | 297       |
| 26 | Highly Efficient and Durable Pd Hydride Nanocubes Embedded in 2D Amorphous NiB Nanosheets for<br>Oxygen Reduction Reaction. Advanced Energy Materials, 2017, 7, 1700919.                                            | 10.2 | 84        |
| 27 | Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and<br>Perspectives. Advanced Energy Materials, 2017, 7, 1700544.                                                      | 10.2 | 593       |
| 28 | Highly Efficient Oxygen Reduction Electrocatalyst Derived from a New Three-Dimensional<br>PolyPorphyrin. ACS Applied Materials & Interfaces, 2016, 8, 25875-25880.                                                  | 4.0  | 36        |
| 29 | A simple way to fine tune the redox potentials of cobalt ions encapsulated in nitrogen doped graphene<br>molecular catalysts for the oxygen evolution reaction. Chemical Communications, 2016, 52,<br>13409-13412.  | 2.2  | 11        |
| 30 | Exploration of the Copper Active Sites in Electrooxidation of Glucose on a Copper/Nitrogen Doped Graphene Nanocomposite. Journal of Physical Chemistry C, 2016, 120, 15593-15599.                                   | 1.5  | 17        |
| 31 | Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on<br>MoS <sub>2</sub> Nanosheets. Journal of the American Chemical Society, 2015, 137, 7365-7370.                                 | 6.6  | 556       |
| 32 | Hollow Core–Shell Structured Ni–Sn@C Nanoparticles: A Novel Electrocatalyst for the Hydrogen<br>Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 9098-9102.                                         | 4.0  | 71        |
| 33 | Ultrasensitive Protein Concentration Detection on a Micro/Nanofluidic Enrichment Chip Using<br>Fluorescence Quenching. ACS Applied Materials & Interfaces, 2015, 7, 6835-6841.                                      | 4.0  | 25        |
| 34 | The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction. Chemical Communications, 2015, 51, 1198-1201.                                            | 2.2  | 57        |
| 35 | Hybrids of gold nanoparticles highly dispersed on graphene for the oxygen reduction reaction.<br>Electrochemistry Communications, 2014, 38, 82-85.                                                                  | 2.3  | 39        |
| 36 | Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nature Communications, 2014, 5, 5285.                                                                                             | 5.8  | 202       |

JIONG WANG

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 9079.                        | 5.2 | 61        |
| 38 | A rapid and sensitive method for hydroxyl radical detection on a microfluidic chip using an N-doped porous carbon nanofiber modified pencil graphite electrode. Analyst, The, 2014, 139, 3416.     | 1.7 | 32        |
| 39 | Ice crystals growth driving assembly of porous nitrogen-doped graphene for catalyzing oxygen reduction probed by in situ fluorescence electrochemistry. Scientific Reports, 2014, 4, 6723.         | 1.6 | 33        |
| 40 | A green approach to the synthesis of novel "Desert rose stone―like nanobiocatalytic system with excellent enzyme activity and stability. Scientific Reports, 2014, 4, 6606.                        | 1.6 | 36        |
| 41 | Synthesis of a hydrophilic poly-l-lysine/graphene hybrid through multiple non-covalent interactions for biosensors. Journal of Materials Chemistry B, 2013, 1, 1406.                               | 2.9 | 62        |
| 42 | Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction. Electrochemistry Communications, 2013, 28, 24-26.                                       | 2.3 | 214       |
| 43 | Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode. Electrochemistry Communications, 2013, 35, 146-148.                         | 2.3 | 82        |
| 44 | Greatly improved catalytic activity and direct electron transfer rate of cytochrome C due to the confinement effect in a layered self-assembly structure. Chemical Communications, 2012, 48, 2316. | 2.2 | 40        |