Cheng Zhong

List of Publications by Citations

Source: https://exaly.com/author-pdf/8469464/cheng-zhong-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,037 27 44 g-index

80 2,672 6.4 5.43 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
75	Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. <i>Applied Microbiology and Biotechnology</i> , 2009 , 84, 667-76	5.7	138
74	Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. <i>Carbohydrate Polymers</i> , 2011 , 86, 1558-1564	10.3	135
73	Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. <i>International Journal of Biological Macromolecules</i> , 2016 , 88, 273-9	7.9	106
72	Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. <i>International Journal of Biological Macromolecules</i> , 2019 , 122, 380-387	7.9	104
71	Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. <i>Carbohydrate Polymers</i> , 2020 , 229, 115456	10.3	82
70	Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. <i>International Journal of Biological Macromolecules</i> , 2017 , 101, 690-695	7.9	75
69	Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles. <i>Polymers</i> , 2017 , 9,	4.5	72
68	Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. <i>Carbohydrate Polymers</i> , 2017 , 165, 455-461	10.3	71
67	Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 6189-99	5.7	7°
66	A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties. <i>International Journal of Biological Macromolecules</i> , 2019 , 132, 692-700	7.9	62
65	Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. <i>International Journal of Biological Macromolecules</i> , 2018 , 114, 1233-1239	7.9	57
64	Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 1989-2006	5.7	56
63	Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives. <i>Composites Part B: Engineering</i> , 2020 , 200, 108208	10	54
62	Metabolomic analysis of antimicrobial mechanisms of Epoly-L-lysine on Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2014 , 62, 4454-65	5.7	53
61	Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. <i>Nanomaterials and Nanotechnology</i> , 2017 , 7, 184798041770717	2.9	52
60	Preparation and characterization of a photocatalytic antibacterial material: Graphene oxide/TiO/bacterial cellulose nanocomposite. <i>Carbohydrate Polymers</i> , 2017 , 174, 1078-1086	10.3	52
59	Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose. <i>Carbohydrate Polymers</i> , 2016 , 151, 907-915	10.3	52

58	Effects of Feed to Inoculum Ratio, Co-digestion, and Pretreatment on Biogas Production from Anaerobic Digestion of Cotton Stalk. <i>Energy & Energy &</i>	4.1	42	
57	Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 1155-17	1 <i>6</i> 57	41	
56	Conversion of lignocellulosic agave residues into liquid biofuels using an AFEXEbased biorefinery. <i>Biotechnology for Biofuels</i> , 2018 , 11, 7	7.8	38	
55	Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. <i>Carbohydrate Polymers</i> , 2016 , 136, 1152-60	10.3	36	
54	Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. <i>Carbohydrate Polymers</i> , 2021 , 253, 117220	10.3	34	
53	Biofuels in China: past, present and future. <i>Biofuels, Bioproducts and Biorefining</i> , 2010 , 4, 326-342	5.3	33	
52	Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. <i>Scientific Reports</i> , 2018 , 8, 6266	4.9	30	
51	Rheological behaviors of Pickering emulsions stabilized by TEMPO-oxidized bacterial cellulose. <i>Carbohydrate Polymers</i> , 2019 , 215, 263-271	10.3	28	
50	Revealing differences in metabolic flux distributions between a mutant strain and its parent strain Gluconacetobacter xylinus CGMCC 2955. <i>PLoS ONE</i> , 2014 , 9, e98772	3.7	28	
49	Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures. <i>Biochemical Engineering Journal</i> , 2015 , 101, 85-98	4.2	27	
48	Aggregation-induced emission-active amino acid/berberine hydrogels with enhanced photodynamic antibacterial and anti-biofilm activity. <i>Chemical Engineering Journal</i> , 2021 , 413, 127542	14.7	27	
47	Facile synthesis of bacterial cellulose and polyethyleneimine based hybrid hydrogels for antibacterial applications. <i>Cellulose</i> , 2020 , 27, 369-383	5.5	23	
46	Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. <i>International Journal of Biological Macromolecules</i> , 2020 , 156, 252-261	7.9	23	
45	Alkali-Based Pretreatment-Facilitated Lignin Valorization: A Review. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16923-16938	3.9	22	
44	Reusable ternary PVA films containing bacterial cellulose fibers and Epolylysine with improved mechanical and antibacterial properties. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 183, 110486	6	21	
43	Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods. <i>Food Chemistry</i> , 2014 , 161, 376-82	8.5	21	
42	Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation. <i>Carbohydrate Polymers</i> , 2021 , 257, 117611	10.3	21	
41	Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization. <i>Frontiers in Microbiology</i> , 2016 , 7, 241	5.7	21	

40	Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin. <i>Energy</i> , 2020 , 195, 117076	7.9	19
39	Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 193, 111099	6	18
38	Effects of Ionic Liquid 1-Ethyl-3-Methylimidazolium Diethylphosphate on Cellulase Produced by Paenibacillus sp. LLZ1. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4922-4926	8.3	18
37	Facile Incorporation of Silver Nanoparticles into Quaternized Poly(2-(Dimethylamino)Ethyl Methacrylate) Brushes as Bifunctional Antibacterial Coatings. <i>Macromolecular Materials and Engineering</i> , 2017 , 302, 1700069	3.9	15
36	Ethylenediamine pretreatment of corn stover facilitates high gravity fermentation with low enzyme loading. <i>Bioresource Technology</i> , 2018 , 267, 227-234	11	14
35	Cellulose-based special wetting materials for oil/water separation: A review. <i>International Journal of Biological Macromolecules</i> , 2021 , 185, 890-906	7.9	14
34	Bacterial cellulose/hyaluronic acid composite hydrogels with improved viscoelastic properties and good thermodynamic stability. <i>Plastics, Rubber and Composites</i> , 2018 , 47, 165-175	1.5	13
33	Metabolic Investigation in Gluconacetobacter xylinus and Its Bacterial Cellulose Production under a Direct Current Electric Field. <i>Frontiers in Microbiology</i> , 2016 , 7, 331	5.7	11
32	Fabrication of Bacterial Cellulose-Based Dressings for Promoting Infected Wound Healing. <i>ACS Applied Materials & Dressings for Promoting Infected Wound Healing. ACS Applied Materials & Dressing State (Materials & Dressing S</i>	9.5	11
31	Tailoring bacterial cellulose structure through CRISPR interference-mediated downregulation of galU in Komagataeibacter xylinus CGMCC 2955. <i>Biotechnology and Bioengineering</i> , 2020 , 117, 2165-2176	5 ^{4.9}	9
30	Chemical Characterization and Nutritional Analysis of Protein Isolates from Caragana korshinskii Kom. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 3217-3222	5.7	9
29	Enhancing Medium-Chain Fatty Acid Ethyl Ester Production During Beer Fermentation Through EEB1 and ETR1 Overexpression in Saccharomyces pastorianus. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 5607-5613	5.7	8
28	Oriented bacterial cellulose-glass fiber nanocomposites with enhanced tensile strength through electric field. <i>Fibers and Polymers</i> , 2017 , 18, 1408-1412	2	7
27	A Lambda Red and FLP/FRT-Mediated Site-Specific Recombination System in and Its Application to Enhance the Productivity of Bacterial Cellulose. <i>ACS Synthetic Biology</i> , 2020 , 9, 3171-3180	5.7	7
26	Study on community structure of microbial consortium for the degradation of viscose fiber wastewater. <i>Bioresources and Bioprocessing</i> , 2017 , 4, 31	5.2	6
25	Bacterial cellulose and its potential for biomedical applications. <i>Biotechnology Advances</i> , 2021 , 53, 1078	516 7.8	6
24	Intracellular metabolite profiling of industrial yeast and the synthesis of flavour compounds in beer. <i>Journal of the Institute of Brewing</i> , 2017 , 123, 328-336	2	5
23	Bacterial cellulose production from ethylenediamine pretreated Caragana korshinskii Kom. <i>Industrial Crops and Products</i> , 2021 , 164, 113340	5.9	5

22	Fabrication of amino acid-based supramolecular hydrogel with silver ions for improved antibacterial properties. <i>Materials Letters</i> , 2021 , 300, 130161	3.3	5
21	Identification of Quorum-Sensing Molecules of -Acyl-Homoserine Lactone in Strains by Liquid Chromatography-Tandem Mass Spectrometry. <i>Molecules</i> , 2019 , 24,	4.8	4
20	Integrating kinetics with thermodynamics to study the alkaline extraction of protein from Caragana korshinskii Kom. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 1801-8	4.9	4
19	The Effect of Growth, Migration and Bacterial Cellulose Synthesis of Gluconacetobacter xylinus in Presence of Direct Current Electric Field Condition. <i>Advanced Materials Research</i> , 2012 , 550-553, 1108-1	f 1 §	4
18	A self-assembled amino acid-based hydrogel with broad-spectrum antibacterial activity. <i>Journal of Materials Science</i> , 2021 , 56, 7626-7636	4.3	3
17	Preparation and characterization of antibacterial bacterial cellulose/chitosan hydrogels impregnated with silver sulfadiazine. <i>International Journal of Biological Macromolecules</i> , 2021 , 189, 483-	4 93	3
16	Permeation of Silver Sulfadiazine Into TEMPO-Oxidized Bacterial Cellulose as an Antibacterial Agent. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 616467	5.8	2
15	Production and applications of bacterial cellulose 2021 , 359-390		2
14	Fabrication of bacterial cellulose with TiO-ZnO nanocomposites as a multifunctional membrane for water remediation <i>Journal of Colloid and Interface Science</i> , 2022 , 620, 1-13	9.3	2
13	Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity <i>Journal of Colloid and Interface Science</i> , 2022 , 622, 135-146	9.3	2
12	Preparation and Characterization of Acylcaramel. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 5614-5620	5.7	1
11	Biochemical engineering in China. <i>Reviews in Chemical Engineering</i> , 2019 , 35, 929-993	5	1
10	Dissolution of Cellulose in Ionic Liquid-DMSO Mixtures: Roles of DMSO/IL Ratio and the Cation Alkyl Chain Length. <i>ACS Omega</i> , 2021 , 6, 27225-27232	3.9	1
9	Green synthesis of acetylated maize starch in different imidazolium carboxylate and choline carboxylate ionic liquids <i>Carbohydrate Polymers</i> , 2022 , 288, 119353	10.3	1
8	Heterochiral peptide-based biocompatible and injectable supramolecular hydrogel with antibacterial activity. <i>Journal of Materials Science</i> , 2022 , 57, 5198	4.3	0
7	In situ regulation of bacterial cellulose networks by starch from different sources or amylose/amylopectin content during fermentation. <i>International Journal of Biological Macromolecules</i> , 2021 , 195, 59-59	7.9	O
6	The production of bacterial cellulose in Gluconacetobacter xylinus regulated by luxR overexpression of quorum sensing system. <i>Applied Microbiology and Biotechnology</i> , 2021 , 105, 7801-781	5 .7	O
5	Lysine Methylation Modulates the Interaction of Archaeal Chromatin Protein Cren7 With DNA Frontiers in Microbiology, 2022 , 13, 837737	5.7	О

4	Structural characterization and immunomodulatory activity of exopolysaccharide from Aureobasidium pullulans CGMCC 23063 <i>Carbohydrate Polymers</i> , 2022 , 288, 119366	10.3	O
3	Developing a High Efficient Process Integrating Protein Extraction with Cellulosic Ethanol Production from Caragana korshinskii Kom. <i>Advanced Materials Research</i> , 2012 , 518-523, 5545-5549	0.5	
2	Whole-genome sequencing exploitation analysis of non-Saccharomyces yeast Nakazawaea ishiwadae GDMCC 60786 and its physiological characterizations. <i>Food Bioscience</i> , 2021 , 41, 100982	4.9	
1	Monosaccharide removal and effects of Komagataeibacter xylinus fermentation on antioxidant capacity and flavor profile of Chinese wolfberry juice. <i>Journal of Food Processing and Preservation</i> , 2021 , 45, e15800	2.1	