Mari Napari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8469380/publications.pdf

Version: 2024-02-01

Μλαι Νλαλαι

#	Article	IF	CITATIONS
1	Atomic scale surface modification of TiO ₂ 3D nano-arrays: plasma enhanced atomic layer deposition of NiO for photocatalysis. Materials Advances, 2021, 2, 273-279.	2.6	4
2	Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in nextâ€generation rigid and flexible device applications. InformaÄnÃ-Materiály, 2021, 3, 536-576.	8.5	57
3	Role of ALD Al ₂ O ₃ Surface Passivation on the Performance of p-Type Cu ₂ O Thin Film Transistors. ACS Applied Materials & Interfaces, 2021, 13, 4156-4164.	4.0	31
4	Photo-assisted Oâ^' and Alâ^' production with a cesium sputter ion source. AIP Conference Proceedings, 2021, , .	0.3	2
5	Bandgap lowering in mixed alloys of Cs ₂ Ag(Sb _x Bi _{1â^*x})Br ₆ double perovskite thin films. Journal of Materials Chemistry A, 2020, 8, 21780-21788.	5.2	66
6	Experimental evidence on photo-assisted Oâ^' ion production from Al2O3 cathode in cesium sputter negative ion source. Journal of Applied Physics, 2020, 128, .	1.1	6
7	Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering. Micromachines, 2020, 11, 1128.	1.4	16
8	Rapid Vapor-Phase Deposition of High-Mobility <i>p</i> -Type Buffer Layers on Perovskite Photovoltaics for Efficient Semitransparent Devices. ACS Energy Letters, 2020, 5, 2456-2465.	8.8	32
9	Antiferromagnetism and pâ€ŧype conductivity of nonstoichiometric nickel oxide thin films. InformaÄnÃ- Materiály, 2020, 2, 769-774.	8.5	20
10	Atomic layer deposition of functional multicomponent oxides. APL Materials, 2019, 7, .	2.2	45
11	Towards Oxide Electronics: a Roadmap. Applied Surface Science, 2019, 482, 1-93.	3.1	236
12	The <i>α</i> and <i>γ</i> plasma modes in plasma-enhanced atomic layer deposition with O ₂ –N ₂ capacitive discharges. Journal Physics D: Applied Physics, 2017, 50, 095201.	1.3	7
13	Room-temperature plasma-enhanced atomic layer deposition of ZnO: Film growth dependence on the PEALD reactor configuration. Surface and Coatings Technology, 2017, 326, 281-290.	2.2	19
14	Development of a microfluidic design for an automatic lab-on-chip operation. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	5
15	Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	30
16	Transition-Edge Sensors for Particle Induced X-ray Emission Measurements. Journal of Low Temperature Physics, 2014, 176, 285-290.	0.6	18
17	Development of procedures for programmable proximity aperture lithography. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 307-310.	0.6	0
18	Lithographic fabrication of soda-lime glass based microfluidics. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 296-298.	0.6	7

Mari Napari

#	Article	lF	CITATIONS
19	Why are hydrogen ions best for MeV ion beam lithography?. Microelectronic Engineering, 2013, 102, 22-24.	1.1	6
20	High speed microfluidic prototyping by programmable proximity aperture MeV ion beam lithography. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 302-306.	0.6	5
21	Highly textured Gd2Zr2O7 films grown on textured Ni-5at.%W substrates by solution deposition route: Growth, texture evolution, and microstructure dependency. Thin Solid Films, 2012, 520, 1965-1972.	0.8	19
22	Direct Writing of Channels for Microfluidics in Silica by MeV Ion Beam Lithography. Advanced Materials Research, 2011, 254, 132-135.	0.3	3