
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8469302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal and freely chosen paddling rate during moderate kayak ergometry. Biology of Sport, 2022, 39, 289-293.	3.2	0
2	A 5-Minute Rest Period Weakens the Phenomenon of History Dependence of Freely Chosen Pedalling Cadence and Entails a Borderland Observation. Advances in Physical Education, 2022, 12, 161-171.	0.4	2
3	Effect of Tapping Bout Duration During Freely Chosen and Passive Finger Tapping on Rate Enhancement. Journal of Motor Behavior, 2021, 53, 351-363.	0.9	1
4	A field study investigating sensory manifestations in recreational female cyclists using a novel female-specific cycling pad. Ergonomics, 2021, 64, 571-581.	2.1	1
5	The puzzle of the walk-to-run transition in humans. Gait and Posture, 2021, 86, 319-326.	1.4	4
6	Unprompted Alteration of Freely Chosen Movement Rate During Stereotyped Rhythmic Movement: Examples and Review. Motor Control, 2021, 25, 385-402.	0.6	1
7	Freely chosen cadence during ergometer cycling is dependent on pedalling history. European Journal of Applied Physiology, 2021, 121, 3041-3049.	2.5	5
8	Contralateral Transfer of the Phenomenon of Repeated Bout Rate Enhancement in Unilateral Index Finger Tapping. Journal of Motor Behavior, 2020, 52, 89-96.	0.9	2
9	Motor variability in elicited repeated bout rate enhancement is associated with higher sample entropy. Human Movement Science, 2019, 68, 102520.	1.4	3
10	Prediction of walk-to-run transition using stride frequency: A test-retest reliability study. Gait and Posture, 2018, 60, 71-75.	1.4	7
11	The effect of saddle nose width and cutout on saddle pressure distribution and perceived discomfort in women during ergometer cycling. Applied Ergonomics, 2018, 70, 175-181.	3.1	12
12	Repeated Bout Rate Enhancement Is Elicited by Various Forms of Finger Tapping. Frontiers in Neuroscience, 2018, 12, 526.	2.8	4
13	External and Internal Focus of Attention Increases Muscular Activation During Bench Press in Resistance-Trained Participants. Journal of Strength and Conditioning Research, 2018, 32, 2442-2451.	2.1	12
14	Peak Power Output in Loaded Jump Squat Exercise is Affected by Set Structure. International Journal of Exercise Science, 2018, 11, 776-784.	0.5	3
15	Effects of Cycling Training at Imposed Low Cadences: A Systematic Review. International Journal of Sports Physiology and Performance, 2017, 12, 1127-1136.	2.3	6
16	Vertical Finger Displacement Is Reduced in Index Finger Tapping During Repeated Bout Rate Enhancement. Motor Control, 2017, 21, 457-467.	0.6	7
17	The role of stride frequency for walk-to-run transition in humans. Scientific Reports, 2017, 7, 2010.	3.3	24
18	Voluntary Movement Frequencies in Submaximal One- and Two-Legged Knee Extension Exercise and Pedaling, Frontiers in Human Neuroscience, 2016, 10, 36.	2.0	6

#	Article	IF	CITATIONS
19	Effects of 5 Weeks of Bench Press Training on Muscle Synergies: A Randomized Controlled Study. Journal of Strength and Conditioning Research, 2016, 30, 1948-1959.	2.1	26
20	Muscle synergies during bench press are reliable across days. Journal of Electromyography and Kinesiology, 2016, 30, 81-88.	1.7	25
21	Effect of seat positions on discomfort, muscle activation, pressure distribution and pedal force during cycling. Journal of Electromyography and Kinesiology, 2016, 27, 78-86.	1.7	31
22	Characteristics of Finger Tapping Are Not Affected by Heavy Strength Training. Journal of Motor Behavior, 2016, 48, 256-263.	0.9	9
23	Betweenâ€day reliability of the trapezius muscle Hâ€reflex and Mâ€wave. Muscle and Nerve, 2015, 52, 1066-1071.	2.2	3
24	Freely Chosen Index Finger Tapping Frequency Is Increased in Repeated Bouts of Tapping. Journal of Motor Behavior, 2015, 47, 490-496.	0.9	13
25	On voluntary rhythmic leg movement behaviour and control during pedalling. Acta Physiologica, 2015, 214, 1-18.	3.8	17
26	Freely chosen stride frequencies during walking and running are not correlated with freely chosen pedalling frequency and are insensitive to strength training. Gait and Posture, 2015, 42, 60-64.	1.4	16
27	Interâ€subject variability of muscle synergies during bench press in power lifters and untrained individuals. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 89-97.	2.9	69
28	Improved Marathon Performance by In-Race Nutritional Strategy Intervention. International Journal of Sport Nutrition and Exercise Metabolism, 2014, 24, 645-655.	2.1	24
29	Linear and nonlinear analyses of multi-channel mechanomyographic recordings reveal heterogeneous activation of wrist extensors in presence of delayed onset muscle soreness. Medical Engineering and Physics, 2014, 36, 1656-1664.	1.7	8
30	Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: a randomized controlled trial. Journal of Applied Physiology, 2014, 116, 1623-1631.	2.5	20
31	Frequency and Pattern of Rhythmic Leg Movement in Humans After Fatiguing Exercises. Motor Control, 2014, 18, 297-309.	0.6	12
32	Frequency and pattern of voluntary pedalling is influenced after one week of heavy strength training. Human Movement Science, 2014, 36, 58-69.	1.4	10
33	Effect of Marathon In-race Nutritional Strategy Intervention on Carbohydrate and Fluid Intake and Blood Glucose. Medicine and Science in Sports and Exercise, 2014, 46, 560-561.	0.4	Ο
34	Pressure Pain Mapping of the Wrist Extensors After Repeated Eccentric Exercise at High Intensity. Journal of Strength and Conditioning Research, 2013, 27, 3045-3052.	2.1	11
35	Strength Training Affects Tendon Cross-Sectional Area and Freely Chosen Cadence Differently in Noncyclists and Well-Trained Cyclists. Journal of Strength and Conditioning Research, 2012, 26, 158-166.	2.1	16
36	Cyclists' Improvement of Pedaling Efficacy and Performance After Heavy Strength Training. International Journal of Sports Physiology and Performance, 2012, 7, 313-321.	2.3	16

#	Article	IF	CITATIONS
37	High volume of endurance training impairs adaptations to 12Âweeks of strength training in well-trained endurance athletes. European Journal of Applied Physiology, 2012, 112, 1457-1466.	2.5	61
38	Strength training improves 5â€min allâ€out performance following 185 min of cycling. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 250-259.	2.9	69
39	Physical activity, job demand–control, perceived stress–energy, and salivary cortisol in white-collar workers. International Archives of Occupational and Environmental Health, 2010, 83, 143-153.	2.3	58
40	Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. European Journal of Applied Physiology, 2010, 108, 965-975.	2.5	112
41	In-season strength maintenance training increases well-trained cyclists' performance. European Journal of Applied Physiology, 2010, 110, 1269-1282.	2.5	55
42	Pole length affects cross-country skiers' performance in an 80-m double poling trial performed on snow from standing start. Sports Engineering, 2010, 12, 171-178.	1.1	16
43	Effect of physical exercise interventions on musculoskeletal pain in all body regions among office workers: A one-year randomized controlled trial. Manual Therapy, 2010, 15, 100-104.	1.6	124
44	Efficient human force transmission tailored for the individual cyclist. Procedia Engineering, 2010, 2, 2543-2548.	1.2	6
45	Effect of Chain Wheel Shape on Crank Torque, Freely Chosen Pedal Rate, and Physiological Responses during Submaximal Cycling. Journal of Physiological Anthropology, 2009, 28, 261-267.	2.6	9
46	The Effect of Worksite Physical Activity Intervention on Physical Capacity, Health, and Productivity: A 1-Year Randomized Controlled Trial. Journal of Occupational and Environmental Medicine, 2009, 51, 759-770.	1.7	88
47	Factors Affecting Cadence Choice During Submaximal Cycling and Cadence Influence on Performance. International Journal of Sports Physiology and Performance, 2009, 4, 3-17.	2.3	26
48	Energy Expenditure and Comfort During Nordic Walking With Different Pole Lengths. Journal of Strength and Conditioning Research, 2009, 23, 1187-1194.	2.1	51
49	Energy Expenditure And Comfort During Nordic Walking And Ordinary Walking. Medicine and Science in Sports and Exercise, 2009, 41, 462.	0.4	Ο
50	Evidence for freely chosen pedalling rate during submaximal cycling to be a robust innate voluntary motor rhythm. Experimental Brain Research, 2008, 186, 365-373.	1.5	36
51	Seated versus standing position for maximization of performance during intense uphill cycling. Journal of Sports Sciences, 2008, 26, 977-984.	2.0	26
52	A Randomized Controlled Intervention Trial to Relieve and Prevent Neck/Shoulder Pain. Medicine and Science in Sports and Exercise, 2008, 40, 983-990.	0.4	105
53	One-year randomized controlled trial with different physical-activity programs to reduce musculoskeletal symptoms in the neck and shoulders among office workers. Scandinavian Journal of Work, Environment and Health, 2008, 34, 55-65.	3.4	182
54	Strength training reduces freely chosen pedal rate during submaximal cycling. European Journal of Applied Physiology, 2007, 101, 419-426.	2.5	23

#	Article	IF	CITATIONS
55	Relationship between efficiency and pedal rate in cycling: significance of internal power and muscle fiber type composition. Scandinavian Journal of Medicine and Science in Sports, 2006, 17, 061120070736025-???.	2.9	22
56	Performance following prolonged sub-maximal cycling at optimal versus freely chosen pedal rate. European Journal of Applied Physiology, 2006, 98, 227-233.	2.5	18
57	Worksite Training may Improve Musculoskeletal Health in Spite of Marginal Effect on Muscle Strength. Medicine and Science in Sports and Exercise, 2006, 38, S371.	0.4	0
58	Validity of Self-Assessed Physical Fitness in Relation to Sex and Physical Activity Level. Medicine and Science in Sports and Exercise, 2006, 38, S371.	0.4	0
59	A physiological counterpoint to mechanistic estimates of ?internal power? during cycling at different pedal rates. European Journal of Applied Physiology, 2004, 91, 435-442.	2.5	28
60	Pedalling rate affects endurance performance during high-intensity cycling. European Journal of Applied Physiology, 2004, 92, 114-120.	2.5	38
61	The shape of the force–elbow angle relationship for maximal voluntary contractions and sub-maximal electrically induced contractions in human elbow flexors. Journal of Biomechanics, 2003, 36, 1713-1718.	2.1	26
62	Blood flow and oxygen uptake increase with total power during five different knee-extension contraction rates. Journal of Applied Physiology, 2002, 93, 1676-1684.	2.5	24
63	Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiologica Scandinavica, 2002, 176, 185-194.	2.2	78
64	Crank inertial load affects freely chosen pedal rate during cycling. Journal of Biomechanics, 2002, 35, 277-285.	2.1	55