David B Collinge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8469251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal, 1997, 11, 1187-1194.	2.8	2,406
2	Plant chitinases. Plant Journal, 1993, 3, 31-40.	2.8	737
3	Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 2008, 121, 267-280.	0.8	262
4	Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytologist, 2007, 174, 637-647.	3.5	220
5	Plant gene expression in response to pathogens. Plant Molecular Biology, 1987, 9, 389-410.	2.0	215
6	A ceratoâ€platanin protein SsCP1 targets plant PR1 and contributes to virulence of <i>Sclerotinia sclerotiorum</i> . New Phytologist, 2018, 217, 739-755.	3.5	211
7	Transcriptional regulation by an NAC (NAM–ATAF1,2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards <i>Blumeria graminis</i> f. sp. <i>hordei</i> in Arabidopsis. Plant Journal, 2008, 56, 867-880.	2.8	210
8	Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant Journal, 1995, 8, 139-145.	2.8	192
9	14-3-3 proteins and the response to abiotic and biotic stress. Plant Molecular Biology, 2002, 50, 1031-1039.	2.0	175
10	Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress. PLoS Genetics, 2015, 11, e1005373.	1.5	167
11	Engineering Pathogen Resistance in Crop Plants: Current Trends and Future Prospects. Annual Review of Phytopathology, 2010, 48, 269-291.	3.5	164
12	The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology, 2002, 3, 135-144.	2.0	163
13	Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology and Diversity, 2018, 11, 555-567.	1.0	159
14	Insights on the Evolution of Mycoparasitism from the Genome of Clonostachys rosea. Genome Biology and Evolution, 2015, 7, 465-480.	1.1	150
15	Molecular Characterization of the Oxalate Oxidase Involved in the Response of Barley to the Powdery Mildew Fungus1. Plant Physiology, 1998, 117, 33-41.	2.3	139
16	The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 2007, 65, 137-150.	2.0	136
17	An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Molecular Biology, 1998, 36, 101-112.	2.0	134
18	Effects of Â-1,3-glucan from Septoria tritici on structural defence responses in wheat. Journal of Experimental Botany, 2009, 60, 4287-4300.	2.4	124

#	Article	IF	CITATIONS
19	14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Molecular Biology, 1999, 40, 545-554.	2.0	122
20	Interaction of barley powdery mildew effector candidate <scp>CSEP0055</scp> with the defence protein <scp>PR17c</scp> . Molecular Plant Pathology, 2012, 13, 1110-1119.	2.0	115
21	A 2-kb Mycovirus Converts a Pathogenic Fungus into a Beneficial Endophyte for Brassica Protection and Yield Enhancement. Molecular Plant, 2020, 13, 1420-1433.	3.9	113
22	A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Molecular Biology, 1998, 37, 849-857.	2.0	105
23	Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Fungal Biology, 2014, 118, 364-373.	1.1	99
24	cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiological and Molecular Plant Pathology, 1992, 40, 395-409.	1.3	98
25	Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era. Frontiers in Plant Science, 2013, 4, 37.	1.7	84
26	Secretomics identifies <i>Fusarium graminearum</i> proteins involved in the interaction with barley and wheat. Molecular Plant Pathology, 2012, 13, 445-453.	2.0	83
27	Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 2020, 144, 104222.	1.4	82
28	Biological control of plant diseases – What has been achieved and what is the direction?. Plant Pathology, 2022, 71, 1024-1047.	1.2	78
29	A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarity to vertebrate forms resident in the endoplasmic reticulum. Plant Molecular Biology, 1993, 21, 1097-1108.	2.0	77
30	What are the prospects for genetically engineered, disease resistant plants?. European Journal of Plant Pathology, 2008, 121, 217-231.	0.8	77
31	Cloning and characterization of a pathogen-induced chitinase in Brassica napus. Plant Molecular Biology, 1992, 20, 277-287.	2.0	75
32	A flavonoid 7-O-methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Molecular Biology, 1998, 36, 219-227.	2.0	70
33	Nar-1 and Nar-2, Two Loci Required for Mla 12 -Specified Race-Specific Resistance to Powdery Mildew in Barley. Plant Cell, 1994, 6, 983.	3.1	65
34	Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Science of the Total Environment, 2021, 759, 143804.	3.9	64
35	Regulation of basal resistance by a powdery mildewâ€induced cysteineâ€rich receptorâ€like protein kinase in barley. Molecular Plant Pathology, 2012, 13, 135-147.	2.0	62
36	Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea. BMC Genomics, 2014, 15, 55.	1.2	61

#	Article	IF	CITATIONS
37	Fusarium Head Blight Modifies Fungal Endophytic Communities During Infection of Wheat Spikes. Microbial Ecology, 2020, 79, 397-408.	1.4	56
38	Analysis of early events in the interaction between <i>Fusarium graminearum</i> and the susceptible barley (<i>Hordeum vulgare</i>) cultivar Scarlett. Proteomics, 2010, 10, 3748-3755.	1.3	55
39	The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Molecular Biology, 2013, 83, 577-590.	2.0	54
40	Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Fungal Biology, 2018, 122, 110-120.	1.1	54
41	A pathogenâ€induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant Journal, 1992, 2, 815-820.	2.8	53
42	Cell wall appositions: the first line of defence. Journal of Experimental Botany, 2009, 60, 351-352.	2.4	52
43	Gene expression in Brassica campestris showing a hypersensitive response to the incompatible pathogen Xanthomonas campestris pv. vitians. Plant Molecular Biology, 1987, 8, 405-414.	2.0	50
44	Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus?. Plant Molecular Biology, 2002, 49, 137-147.	2.0	50
45	Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley. Journal of Proteomics, 2010, 73, 743-752.	1.2	49
46	Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction. Plant Journal, 2000, 23, 245-254.	2.8	46
47	A simple model based on known plant defence reactions is sufficient to explain most aspects of nodulation. Journal of Experimental Botany, 1995, 46, 1-18.	2.4	42
48	A putative O-methyltransferase from barley is induced by fungal pathogens and UV light. Plant Molecular Biology, 1994, 26, 1797-1806.	2.0	39
49	Expression of a defence-related intercellular barley peroxidase in transgenic tobacco. Plant Science, 1997, 122, 173-182.	1.7	38
50	Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels. Plant Molecular Biology Reporter, 1996, 14, 266-272.	1.0	35
51	Transgenic approaches for plant disease control: Status and prospects 2021. Plant Pathology, 2022, 71, 207-225.	1.2	30
52	In vitro characterization of the Ac locus in white clover (Trifolium repens L.). Archives of Biochemistry and Biophysics, 1982, 218, 38-45.	1.4	29
53	Searching for Novel Fungal Biological Control Agents for Plant Disease Control Among Endophytes. , 2019, , 25-51.		29
54	Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph: Rhizoctonia sp.). Tree Physiology, 2005, 25, 1533-1543.	1.4	28

#	Article	IF	CITATIONS
55	The Barley/Blumeria (Syn. Erysiphe) Graminis Interaction. , 2000, , 77-100.		25
56	Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach. Biological Control, 2020, 141, 104128.	1.4	25
57	Accumulation of defence-related transcripts and cloning of a chitinase mRNA from pea leaves (Pisum) Tj ETQq1	1 0.784314 1.7	4 rgBT /Overl
58	Evidence that linamarin and lotaustralin, the two cyanogenic glucosides of Trifolium repens L., are synthesized by a single set of microsomal enzymes controlled by the Ac/ac locus. Plant Science Letters, 1984, 34, 119-125.	1.9	22
59	Early induction of new mRNAs accompanies the resistance reaction of barley to the wheat pathogen, Erysiphe graminis f.sp. tritici. Physiological and Molecular Plant Pathology, 1990, 36, 471-481.	1.3	20
60	Disease-Reducing Effect of Chromolaena odorata Extract on Sheath Blight and Other Rice Diseases. Phytopathology, 2011, 101, 231-240.	1.1	20
61	Post-translational modification of barley 14-3-3A is isoform-specific and involves removal of the hypervariable C-terminus. Plant Molecular Biology, 2002, 50, 535-542.	2.0	19
62	The influence of the fungal pathogen Mycocentrospora acerina on the proteome and polyacetylenes and 6-methoxymellein in organic and conventionally cultivated carrots (Daucus carota) during post harvest storage. Journal of Proteomics, 2012, 75, 962-977.	1.2	18
63	Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biology and Technology, 2013, 76, 26-33.	2.9	17
64	The inheritance of cyanoglucoside content in Trifolium repens L Biochemical Genetics, 1984, 22, 139-151.	0.8	16
65	Roles of reactive oxygen species in interactions between plants and pathogens. , 2008, , 267-280.		15
66	Identification and characterization of barley RNA-directed RNA polymerases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 375-385.	0.9	13
67	A novel transcription factor UvCGBP1 regulates development and virulence of rice false smut fungus <i>Ustilaginoidea virens</i> . Virulence, 2021, 12, 1563-1579.	1.8	13
68	A cultivation independent, PCR-based protocol for the direct identification of plant pathogens in infected plant material. European Journal of Plant Pathology, 2009, 123, 473-476.	0.8	12
69	A Sesquiterpene Synthase from the Endophytic Fungus Serendipita indica Catalyzes Formation of Viridiflorol. Biomolecules, 2021, 11, 898.	1.8	12
70	Transgenic crops and beyond: how can biotechnology contribute to the sustainable control of plant diseases?. European Journal of Plant Pathology, 2018, 152, 977-986.	0.8	10
71	cDNA Cloning and Characterization of mRNAs Induced in Barley by the Fungal Pathogen, Erysiphe Graminis. Developments in Plant Pathology, 1993, , 304-307.	0.1	9
72	How can we exploit functional genomics approaches for understanding the nature of plant defences? Barley as a case study. European Journal of Plant Pathology, 2008, 121, 257-266.	0.8	8

#	Article	IF	CITATIONS
73	Defining the twig fungal communities of Fraxinus species and Fraxinus excelsior genotypes with differences in susceptibility to ash dieback. Fungal Ecology, 2019, 42, 100859.	0.7	8
74	The Fungal Endophyte Penicillium olsonii ML37 Reduces Fusarium Head Blight by Local Induced Resistance in Wheat Spikes. Journal of Fungi (Basel, Switzerland), 2022, 8, 345.	1.5	8
75	Activity-guided separation of Chromolaena odorata leaf extract reveals fractions with rice disease-reducing properties. European Journal of Plant Pathology, 2015, 143, 331-341.	0.8	3
76	Azadirachta indica Reduces Black Sigatoka in East African Highland Banana by Direct Antimicrobial Effects against Mycosphaerella fijiensis without Inducing Resistance. Journal of Agricultural Science, 2017, 9, 61.	0.1	3
77	Fusarium diseases: biology and management perspectives. Burleigh Dodds Series in Agricultural Science, 2018, , 23-45.	0.1	3
78	The Responses of Plants to Pathogens. , 2001, , 131-158.		1
79	How can we exploit functional genomics approaches for understanding the nature of plant defences? Barley as a case study. , 2008, , 257-266.		1
80	What are the prospects for genetically engineered, disease resistant plants?. , 2007, , 217-231.		0