Nicole Fahrenfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8468982/publications.pdf

Version: 2024-02-01

516215 414034 1,316 36 16 32 citations h-index g-index papers 36 36 36 1919 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere, 2016, 162, 277-284.	4.2	293
2	Effect of Manure Application on Abundance of Antibiotic Resistance Genes and Their Attenuation Rates in Soil: Field-Scale Mass Balance Approach. Environmental Science & Environmental Science & 2643-2650.	4.6	185
3	Source tracking microplastics in the freshwater environment. TrAC - Trends in Analytical Chemistry, 2019, 112, 248-254.	5.8	132
4	Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications. Frontiers in Microbiology, 2013, 4, 130.	1.5	114
5	Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environmental Science: Water Research and Technology, 2019, 5, 495-505.	1.2	97
6	Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes. Scientific Reports, 2016, 6, 38432.	1.6	55
7	Insights into Biodegradation Through Depth-Resolved Microbial Community Functional and Structural Profiling of a Crude-Oil Contaminant Plume. Microbial Ecology, 2014, 68, 453-462.	1.4	39
8	Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics. Science of the Total Environment, 2017, 580, 1205-1213.	3.9	39
9	Effect of biostimulants on 2,4,6-trinitrotoluene (TNT) degradation and bacterial community composition in contaminated aquifer sediment enrichments. Biodegradation, 2013, 24, 179-190.	1.5	36
10	Quantification and composition of microplastics in the Raritan Hudson Estuary: Comparison to pathways of entry and implications for fate. Chemosphere, 2021, 272, 129886.	4.2	30
11	Emerging investigators series: sewer surveillance for monitoring antibiotic use and prevalence of antibiotic resistance: urban sewer epidemiology. Environmental Science: Water Research and Technology, 2016, 2, 788-799.	1.2	29
12	Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes. Poultry Science, 2015, 94, 867-874.	1.5	28
13	Comparison of residential dormitory COVID-19 monitoring via weekly saliva testing and sewage monitoring. Science of the Total Environment, 2022, 814, 151947.	3.9	28
14	Partitioning of Antibiotic Resistance Genes and Fecal Indicators Varies Intra and Inter-Storm during Combined Sewer Overflows. Frontiers in Microbiology, 2017, 8, 2024.	1.5	24
15	Viability-based quantification of antibiotic resistance genes and human fecal markers in wastewater effluent and receiving waters. Science of the Total Environment, 2019, 656, 495-502.	3.9	22
16	Inter-storm variation in microplastic concentration and polymer type at stormwater outfalls and a bioretention basin. Science of the Total Environment, 2022, 809, 151104.	3.9	21
17	Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community. Environmental Science: Water Research and Technology, 2017, 3, 1061-1072.	1.2	16
18	Accumulation of SARS-CoV-2 RNA in Sewer Biofilms. ACS ES&T Water, 2022, 2, 1844-1851.	2.3	16

#	Article	IF	Citations
19	Pervasive occurrence of microplastics in Hudson-Raritan estuary zooplankton. Science of the Total Environment, 2022, 817, 152812.	3.9	16
20	Factors associated with elevated levels of antibiotic resistance genes in sewer sediments and wastewater. Environmental Science: Water Research and Technology, 2020, 6, 1697-1710.	1.2	15
21	Total coliform and <i>Escherichia coli</i> in microplastic biofilms grown in wastewater and inactivation by peracetic acid. Water Environment Research, 2021, 93, 334-342.	1.3	15
22	Abundance, diversity, and host assignment of total, intracellular, and extracellular antibiotic resistance genes in riverbed sediments. Water Research, 2022, 217, 118363.	5. 3	12
23	Revisiting John Snow to Meet the Challenge of Nontuberculous Mycobacterial Lung Disease. International Journal of Environmental Research and Public Health, 2019, 16, 4250.	1.2	9
24	Fecal Sterol and Runoff Analysis for Nonpoint Source Tracking. Journal of Environmental Quality, 2016, 45, 315-322.	1.0	8
25	Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: A literature review. City and Environment Interactions, 2021, 11, 100070.	1.8	8
26	Yearâ€long wastewater monitoring for SARSâ€CoVâ€2 signals in combined and separate sanitary sewers. Water Environment Research, 2022, 94, .	1.3	8
27	Sewer biofilm microbiome and antibiotic resistance genes as function of pipe material, source of microbes, and disinfection: field and laboratory studies. Environmental Science: Water Research and Technology, 2020, 6, 2122-2137.	1.2	6
28	Tagging the vanA gene in wastewater microbial communities for cell sorting and taxonomy of vanA carrying cells. Science of the Total Environment, 2020, 732, 138865.	3.9	4
29	Metabolically Active Prokaryotes and Actively Transcribed Antibiotic Resistance Genes in Sewer Systems: Implications for Public Health and Microbially Induced Corrosion. Microbial Ecology, 2022, 83, 583-595.	1.4	3
30	Kinetic and Pathway Modeling of Reductive 2,4,6-Trinitrotoluene Biodegradation with Different Electron Donors. Journal of Environmental Engineering, ASCE, 2015, 141, 04015014.	0.7	2
31	Settling and Peracetic Acid for End-of-Pipe Treatment of $\langle i \rangle$ sul $\langle i \rangle$ 1-Carrying Indicator Organisms and Impact on Receiving Water. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	2
32	Comparison of qPCR and amplicon sequencing based methods for fecal source tracking in a mixed land use estuarine watershed. Environmental Science: Water Research and Technology, 2019, 5, 2108-2123.	1.2	2
33	Nontuberculous Mycobacteria in the Biofilm Microbiome of Private Well and Premise Plumbing. Environmental Engineering Science, 0, , .	0.8	2
34	April's WER Editor's Choice: "Protecting wastewater workers from disease risks: Personal protective equipment guidelines― Water Environment Research, 2020, 92, 494-494.	1.3	0
35	Editorial: April 2021. Water Environment Research, 2021, 93, 490-490.	1.3	0
36	Disinfection of Microbial Agents in Combined Sewer Overflows Using the Green Disinfectant Peracetic Acid. Proceedings of the Water Environment Federation, 2016, 2016, 1450-1457.	0.0	0