
Maria Oszajca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8468980/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox cycling in the activation of peroxides by iron porphyrin and manganese complexes. â€~Catching' catalytic active intermediates. Coordination Chemistry Reviews, 2016, 306, 483-509.	18.8	63
2	Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coordination Chemistry Reviews, 2016, 327-328, 143-165.	18.8	57
3	Combined Experimental and Theoretical Study on the Reactivity of Compounds I and II in Horseradish Peroxidase Biomimetics. Chemistry - A European Journal, 2014, 20, 14437-14450.	3.3	33
4	Temperature and Pressure Effects on C–H Abstraction Reactions Involving Compound I and II Mimics in Aqueous Solution. Inorganic Chemistry, 2014, 53, 2848-2857.	4.0	22
5	Interaction of the NAMI-A complex with nitric oxide under physiological conditions. New Journal of Chemistry, 2014, 38, 3386-3394.	2.8	17
6	Mechanistic Insight into Peroxoâ€Shunt Formation of Biomimetic Models for Compoundâ€II, Their Reactivity toward Organic Substrates, and the Influence of <i>N</i> â€Methylimidazole Axial Ligation. Chemistry - A European Journal, 2014, 20, 2328-2343.	3.3	17
7	Formation of [Ru ^{III} (edta)(SNO)] ^{2–} in Ru ^{III} (edta)-Mediated S-Nitrosylation of Bisulfide Ion. Inorganic Chemistry, 2016, 55, 5037-5040.	4.0	15
8	The efficient Δ1-dehydrogenation of a wide spectrum of 3-ketosteroids in a broad pH range by 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105731.	2.5	11
9	Enzymatic Δ ¹ -Dehydrogenation of 3-Ketosteroids—Reconciliation of Kinetic Isotope Effects with the Reaction Mechanism. ACS Catalysis, 2021, 11, 8211-8225.	11.2	10
10	Electrochemistry of Ru(edta) complexes relevant to small molecule transformations: Catalytic implications and challenges. Coordination Chemistry Reviews, 2021, 436, 213773.	18.8	10
11	Inorganic reaction mechanisms. A personal journey. Dalton Transactions, 2020, 49, 4599-4659.	3.3	9
12	Mechanistic Studies on the Reactions of Cyanide with a Water-Soluble Fe(III) Porphyrin and Their Effect on the Binding of NO. Inorganic Chemistry, 2011, 50, 3413-3424.	4.0	8
13	Rulll(edta) mediated oxidation of azide in the presence of hydrogen peroxide. Azide versus peroxide activation. Dalton Transactions, 2014, 43, 3087-3094.	3.3	8
14	Hypoxia-selective inhibition of angiogenesis development by NAMI-A analogues. BioMetals, 2016, 29, 1035-1046.	4.1	8
15	Metal-Assisted Activation of Nitric Oxide—Mechanistic Aspects of Complex Nitrosylation Processes. Advances in Inorganic Chemistry, 2015, 67, 171-241.	1.0	7
16	Urban Particulate Matterâ€Induced Decomposition of <i>S</i> â€Nitrosoglutathione Relevant to Aberrant Nitric Oxide Biological Signaling. ChemSusChem, 2019, 12, 661-671.	6.8	7
17	Ru ^{III} (edta) complexes as molecular redox catalysts in chemical and electrochemical reduction of dioxygen and hydrogen peroxide: inner-sphere <i>versus</i> outer-sphere mechanism. RSC Advances, 2021, 11, 21359-21366.	3.6	7
18	The Influence of Redoxâ€Active Transition Metal Containing Micro―and Nanoparticles on the Properties of Representative Bioinorganic Reaction Systems. European Journal of Inorganic Chemistry, 2018, 2018, 1229-1235.	2.0	6

MARIA OSZAJCA

#	Article	IF	CITATIONS
19	Baseâ€Catalyzed Hydrolysis of a Ru ^{II} –Chloro–dmso Complex and Its Reactivity towards <scp>L</scp> â€Methionine. European Journal of Inorganic Chemistry, 2014, 2014, 1333-1344.	2.0	4
20	Experimental and Computational Insight into the Mechanism of NO Binding to Ferric Microperoxidase. The Likely Role of Tautomerization to Account for the pH Dependence. Inorganic Chemistry, 2021, 60, 15948-15967.	4.0	4
21	Enhancement of NO release from S-nitrosoalbumin by pollution derived metal ions. Dalton Transactions, 2021, 50, 9923-9933.	3.3	4
22	Strategies for Oral Delivery of Metal-Saturated Lactoferrin. Current Protein and Peptide Science, 2019, 20, 1046-1051.	1.4	4
23	Phenolic Compounds of Reynoutria sp. as Modulators of Oral Cavity Lactoperoxidase System. Antioxidants, 2021, 10, 676.	5.1	3
24	Blood Plasma's Protective Ability against the Degradation of S-Nitrosoglutathione under the Influence of Air-Pollution-Derived Metal Ions in Patients with Exacerbation of Heart Failure and Coronary Artery Disease. International Journal of Molecular Sciences, 2021, 22, 10500.	4.1	2
25	High-Pressure Mechanistic Insight into Bioinorganic NO Chemistry. Molecules, 2021, 26, 4947.	3.8	1
26	Reaction of [Ru ^{III} (EDTA)(H ₂ O/OH)] ^{â^'/2â^'} with bisulfide and persulfide in aqueous solution: kinetic and mechanistic studies. Journal of Coordination Chemistry, 2019, 72, 2904-2915.	2.2	0