
Manling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8468548/publications.pdf

Version: 2024-02-01

ΜΑΝΙΙΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovascular Research, 2023, 119, 571-586.	1.8	12
2	Diet-induced obese mice are resistant to improvements in cardiac function resulting from short-term adropin treatment. Current Research in Physiology, 2022, 5, 55-62.	0.8	3
3	GPER-dependent estrogen signaling increases cardiac GCN5L1 expression. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H762-H768.	1.5	6
4	The mitochondrial regulator PGC1α is induced by cGMP–PKG signaling and mediates the protective effects of phosphodiesterase 5 inhibition in heart failure. FEBS Letters, 2021, 596, 17.	1.3	9
5	CaMKII exacerbates heart failure progression by activating class I HDACs. Journal of Molecular and Cellular Cardiology, 2020, 149, 73-81.	0.9	19
6	Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet. Scientific Reports, 2020, 10, 10665.	1.6	17
7	Increased fatty acid oxidation enzyme activity in the hearts of mice fed a high fat diet does not correlate with improved cardiac contractile function. Current Research in Physiology, 2020, 3, 44-49.	0.8	4
8	Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling. Biochemical Journal, 2019, 476, 1713-1724.	1.7	22
9	Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiological Reports, 2019, 7, e14043.	0.7	34
10	Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions. Physiological Reports, 2019, 7, e14054.	0.7	9
11	Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice. Journal of Molecular and Cellular Cardiology, 2019, 129, 174-178.	0.9	41
12	Cardiac-specific deletion of GCN5L1 restricts recovery from ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 69-78.	0.9	19
13	The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA. Journal of Biological Chemistry, 2018, 293, 17676-17684.	1.6	62
14	Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway. Redox Biology, 2018, 18, 25-32.	3.9	66
15	Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H265-H274.	1.5	60
16	Pathological Cardiac Hypertrophy Alters Intracellular Targeting of Phosphodiesterase Type 5 From Nitric Oxide Synthase-3 to Natriuretic Peptide Signaling. Circulation, 2012, 126, 942-951.	1.6	39
17	Myocardial Remodeling Is Controlled by Myocyte-Targeted Gene Regulation of Phosphodiesterase Type 5. Journal of the American College of Cardiology, 2010, 56, 2021-2030.	1.2	75