Carlos J Rodriguez-Ortiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8468453/publications.pdf

Version: 2024-02-01

38 papers

1,711 citations

257101 24 h-index 37 g-index

39 all docs 39 docs citations 39 times ranked 2282 citing authors

#	Article	IF	CITATIONS
1	Inflammatory Cytokine IL- $1\hat{1}^2$ Downregulates Endothelial LRP1 via MicroRNA-mediated Gene Silencing. Neuroscience, 2021, 453, 69-80.	1.1	4
2	Generation of a humanized $A\hat{l}^2$ expressing mouse demonstrating aspects of Alzheimer $\hat{a} \in \mathbb{N}$ s disease-like pathology. Nature Communications, 2021, 12, 2421.	5.8	53
3	Calsyntenin-3 interacts with the sodium-dependent vitamin C transporter-2 to regulate vitamin C uptake. International Journal of Biological Macromolecules, 2021, 192, 1178-1184.	3.6	5
4	Genetic Ablation of Hematopoietic Cell Kinase Accelerates Alzheimer's Disease–Like Neuropathology in Tg2576 Mice. Molecular Neurobiology, 2020, 57, 2447-2460.	1.9	15
5	Chronic copper exposure directs microglia towards degenerative expression signatures in wild-type and J20 mouse model of Alzheimer's disease. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126578.	1.5	13
6	miRâ€181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell, 2020, 19, e13118.	3.0	42
7	Intra- and extracellular \hat{l}^2 -amyloid overexpression via adeno-associated virus-mediated gene transfer impairs memory and synaptic plasticity in the hippocampus. Scientific Reports, 2019, 9, 15936.	1.6	12
8	Amyloid-beta impairs TOM1-mediated IL-1R1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21198-21206.	3.3	24
9	Copper-Induced Upregulation of MicroRNAs Directs the Suppression of Endothelial LRP1 in Alzheimer's Disease Model. Toxicological Sciences, 2019, 170, 144-156.	1.4	23
10	P1â€236: AÎ ² OLIGOMERS IMPAIR PLASTICITY BY DYSREGULATING MIRâ€181A IN PRIMARY HIPPOCAMPAL CULTI Alzheimer's and Dementia, 2018, 14, P368.	URES.	0
11	Inhibition of hematopoietic cell kinase dysregulates microglial function and accelerates early stage Alzheimer's diseaseâ€ike neuropathology. Glia, 2018, 66, 2700-2718.	2.5	24
12	Inflammatory Cytokine, IL- $1\hat{i}^2$, Regulates Glial Glutamate Transporter via microRNA- $181a$ in vitro. Journal of Alzheimer's Disease, 2018, 63, 965-975.	1.2	16
13	Impaired <scp>AMPA</scp> signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell, 2018, 17, e12791.	3.0	58
14	Determinants to trigger memory reconsolidation: The role of retrieval and updating information. Neurobiology of Learning and Memory, 2017, 142, 4-12.	1.0	26
15	The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. American Journal of Pathology, 2016, 186, 1623-1634.	1.9	21
16	Shortâ€ŧerm modern lifeâ€ŀike stress exacerbates Aβâ€pathology and synapse loss in 3xTgâ€∢scp>AD mic Journal of Neurochemistry, 2015, 134, 915-926.	^{Ce} 2.1	74
17	Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2015, 36, 2260-2271.	1.5	128
18	Repeated cognitive stimulation alleviates memory impairments in an Alzheimer's disease mouse model. Brain Research Bulletin, 2015, 117, 10-15.	1.4	33

#	Article	IF	Citations
19	Infection, systemic inflammation, and Alzheimer's disease. Microbes and Infection, 2015, 17, 549-556.	1.0	81
20	Consolidation and reconsolidation of object recognition memory. Behavioural Brain Research, 2015, 285, 213-222.	1.2	47
21	Retrieval is not necessary to trigger reconsolidation of object recognition memory in the perirhinal cortex. Learning and Memory, 2014, 21, 452-456.	0.5	25
22	Upregulation of miR-181 Decreases c-Fos and SIRT-1 in the Hippocampus of 3xTg-AD Mice. Journal of Alzheimer's Disease, 2014, 42, 1229-1238.	1.2	77
23	Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition. Neurobiology of Disease, 2014, 62, 407-415.	2.1	19
24	Genetic Ablation of Tau Mitigates Cognitive Impairment Induced by Type 1 Diabetes. American Journal of Pathology, 2014, 184, 819-826.	1.9	41
25	Neuronal-Specific Overexpression of a Mutant Valosin-Containing Protein Associated with IBMPFD Promotes Aberrant Ubiquitin and TDP-43 Accumulation and Cognitive Dysfunction in Transgenic Mice. American Journal of Pathology, 2013, 183, 504-515.	1.9	35
26	Retrieval and reconsolidation of object recognition memory are independent processes in the perirhinal cortex. Neuroscience, 2013, 253, 398-405.	1.1	45
27	Taste aversion memory reconsolidation is independent of its retrieval. Neurobiology of Learning and Memory, 2012, 98, 215-219.	1.0	50
28	Muscarinic receptors activity in the perirhinal cortex and hippocampus has differential involvement in the formation of recognition memory. Neurobiology of Learning and Memory, 2012, 97, 418-424.	1.0	24
29	Long-term aversive taste memory requires insular and amygdala protein degradation. Neurobiology of Learning and Memory, 2011, 95, 311-315.	1.0	39
30	Differential participation of temporal structures in the consolidation and reconsolidation of taste aversion extinction. European Journal of Neuroscience, 2010, 32, 1018-1023.	1.2	32
31	Simultaneous but not independent anisomycin infusions in insular cortex and amygdala hinder stabilization of taste memory when updated. Learning and Memory, 2009, 16, 514-519.	0.5	43
32	Medial temporal lobe structures participate differentially in consolidation of safe and aversive taste memories. European Journal of Neuroscience, 2008, 28, 1377-1381.	1.2	63
33	Intrahippocampal anisomycin infusions disrupt previously consolidated spatial memory only when memory is updated. Neurobiology of Learning and Memory, 2008, 89, 352-359.	1.0	69
34	The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learning and Memory, 2008, 15, 618-624.	0.5	188
35	Basolateral amygdala glutamatergic activation enhances taste aversion through NMDA receptor activation in the insular cortex. European Journal of Neuroscience, 2005, 22, 2596-2604.	1.2	69
36	Protein synthesis underlies post-retrieval memory consolidation to a restricted degree only when updated information is obtained. Learning and Memory, 2005, 12, 533-537.	0.5	101

#	Article	IF	CITATIONS
37	Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation. Learning and Memory, 2004, 11, 95-101.	0.5	29
38	Cholinergic dependence of taste memory formation: Evidence of two distinct processes. Neurobiology of Learning and Memory, 2003, 80, 323-331.	1.0	63