Brian Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8468071/publications.pdf

Version: 2024-02-01

623734 434195 1,062 48 14 31 citations g-index h-index papers 49 49 49 1772 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Investigations of Bis(alkylthiocarbamato)copper Linkage Isomers. Inorganic Chemistry, 2022, 61, 7715-7719.	4.0	2
2	Insight into the Maturation Process of the Nitrile Hydratase Active Site. Inorganic Chemistry, 2021, 60, 5432-5435.	4.0	2
3	The flexible N-terminus of BchL autoinhibits activity through interaction with its [4Fe-4S] cluster and released upon ATP binding. Journal of Biological Chemistry, 2021, 296, 100107.	3.4	4
4	Identification of an Intermediate Species along the Nitrile Hydratase Reaction Pathway by EPR Spectroscopy. Biochemistry, 2021, , .	2.5	1
5	Examination of the Catalytic Role of the Axial Cystine Ligand in the Co-Type Nitrile Hydratase from Pseudonocardia thermophila JCM 3095. Catalysts, 2021, 11, 1381.	3.5	1
6	Increased formation of reactive oxygen species during tumor growth: Ex vivo low-temperature EPR and in vivo bioluminescence analyses. Free Radical Biology and Medicine, 2020, 147, 167-174.	2.9	15
7	The Fe-type nitrile hydratase from Rhodococcus equi TG328-2 forms an alpha-activator protein complex. Journal of Biological Inorganic Chemistry, 2020, 25, 903-911.	2.6	4
8	Mitochondria-targeted magnolol inhibits OXPHOS, proliferation, and tumor growth via modulation of energetics and autophagy in melanoma cells. Cancer Treatment and Research Communications, 2020, 25, 100210.	1.7	16
9	Structural basis for the hydrolytic dehalogenation of the fungicide chlorothalonil. Journal of Biological Chemistry, 2020, 295, 8668-8677.	3.4	4
10	Magnolia extract is effective for the chemoprevention of oral cancer through its ability to inhibit mitochondrial respiration at complex I. Cell Communication and Signaling, 2020, 18, 58.	6.5	16
11	Substrate recognition induces sequential electron transfer across subunits in the nitrogenase-like DPOR complex. Journal of Biological Chemistry, 2020, 295, 13630-13639.	3.4	6
12	Trapping of a Putative Intermediate in the Cytochrome <i>c</i> Nitrite Reductase (ccNiR)-Catalyzed Reduction of Nitrite: Implications for the ccNiR Reaction Mechanism. Journal of the American Chemical Society, 2019, 141, 13358-13371.	13.7	17
13	Insights into the catalytic mechanism of a bacterial hydrolytic dehalogenase that degrades the fungicide chlorothalonil. Journal of Biological Chemistry, 2019, 294, 13411-13420.	3.4	3
14	Cellular maturation of an iron-type nitrile hydratase interrogated using EPR spectroscopy. Journal of Biological Inorganic Chemistry, 2019, 24, 1105-1113.	2.6	3
15	Low-Temperature EPR Spectroscopy as a Probe-Free Technique for Monitoring Oxidants Formed in Tumor Cells and Tissues: Implications in Drug Resistance and OXPHOS-Targeted Therapies. Cell Biochemistry and Biophysics, 2019, 77, 89-98.	1.8	12
16	Tricarbonylrhenium(I) Complexes of Dinucleating Redox-Active Pincer Ligands. Organometallics, 2018, 37, 989-1000.	2.3	12
17	Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biology, 2018, 15, 347-362.	9.0	155
18	Analyzing the function of the insert region found between the $\hat{l}\pm$ and \hat{l}^2 -subunits in the eukaryotic nitrile hydratase from Monosiga brevicollis. Archives of Biochemistry and Biophysics, 2018, 657, 1-7.	3.0	2

#	Article	IF	CITATIONS
19	Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. Journal of Biological Chemistry, 2018, 293, 10363-10380.	3.4	80
20	Sdha+/- Rats Display Minimal Muscle Pathology Without Significant Behavioral or Biochemical Abnormalities. Journal of Neuropathology and Experimental Neurology, 2018, 77, 665-672.	1.7	10
21	Mito-Apocynin Prevents Mitochondrial Dysfunction, Microglial Activation, Oxidative Damage, and Progressive Neurodegeneration in MitoPark Transgenic Mice. Antioxidants and Redox Signaling, 2017, 27, 1048-1066.	5.4	107
22	Multiple States of Nitrile Hydratase from <i>Rhodococcus equi</i> TG328-2: Structural and Mechanistic Insights from Electron Paramagnetic Resonance and Density Functional Theory Studies. Biochemistry, 2017, 56, 3068-3077.	2.5	9
23	The iron-type nitrile hydratase activator protein is a GTPase. Biochemical Journal, 2017, 474, 247-258.	3.7	15
24	Biocompatible Copper Oxide Nanoparticle Composites from Cellulose and Chitosan: Facile Synthesis, Unique Structure, and Antimicrobial Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42503-42515.	8.0	62
25	A cobalt-containing eukaryotic nitrile hydratase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 107-112.	2.3	12
26	Increasing tetrahydrobiopterin in cardiomyocytes adversely affects cardiac redox state and mitochondrial function independently of changes in NO production. Free Radical Biology and Medicine, 2016, 93, 1-11.	2.9	7
27	Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome. Free Radical Biology and Medicine, 2016, 92, 141-151.	2.9	16
28	EPR Methods for Biological Cu(II). Methods in Enzymology, 2015, 563, 341-361.	1.0	14
29	Correlations between the Electronic Properties of <i>Shewanella oneidensis</i> Cytochrome <i>c</i> Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation. Biochemistry, 2015, 54, 3749-3758.	2.5	9
30	Inhibition of the <i>dapE</i> -Encoded <i>N</i> -Succinyl- <scp>l</scp> , <scp>l</scp> -diaminopimelic Acid Desuccinylase from <i>Neisseria meningitidis</i> by <scp>l</scp> -Captopril. Biochemistry, 2015, 54, 4834-4844.	2.5	17
31	<i>Shewanella oneidensis</i> Cytochrome <i>c</i> Nitrite Reductase (ccNiR) Does Not Disproportionate Hydroxylamine to Ammonia and Nitrite, Despite a Strongly Favorable Driving Force. Biochemistry, 2014, 53, 2136-2144.	2.5	11
32	Dilution of dipolar interactions in a spin-labeled, multimeric metalloenzyme for DEER studies. Journal of Inorganic Biochemistry, 2014, 136, 40-46.	3.5	8
33	Responses of Mn ²⁺ speciation in <i>Deinococcus radiodurans</i> and <i>Escherichia coli</i> to γ-radiation by advanced paramagnetic resonance methods. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5945-5950.	7.1	63
34	Electron Distribution within the Cytochrome c Nitrite Reductase Hemes as a Function of Applied Potential: a Spectroâ€Potentiometric Analysis. FASEB Journal, 2013, 27, lb63.	0.5	0
35	Spin Hamiltonian Parameters for Cu(II)â^'Prion Peptide Complexes from L-Band Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2011, 133, 1814-1823.	13.7	11
36	Avoiding premature oxidation during the binding of Cu(II) to a dithiolate site in BsSCO. A rapid freeze-quench EPR study. FEBS Letters, 2011, 585, 861-864.	2.8	12

#	Article	IF	CITATIONS
37	EPR of Cu2+ Prion Protein Constructs at 2 GHz Using the g⊥ Region to Characterize Nitrogen Ligation. Biophysical Journal, 2009, 96, 3354-3362.	0.5	15
38	Substrate Binding Preferences and $p < i > K < / i > < sub > a < / sub > Determinations of a Nitrile Hydratase Model Complex: Variable Solvent Coordination to [(bmmp-TASN)Fe]OTf. Inorganic Chemistry, 2009, 48, 2300-2308.$	4.0	13
39	The Metallo- \hat{l}^2 -lactamase GOB Is a Mono-Zn(II) Enzyme with a Novel Active Site. Journal of Biological Chemistry, 2007, 282, 18286-18293.	3.4	70
40	Asp-120 Locates Zn2 for Optimal Metallo- \hat{l}^2 -lactamase Activity. Journal of Biological Chemistry, 2007, 282, 18276-18285.	3.4	40
41	Both Nucleophile and Substrate Bind to the Catalytic Fe(II)-Center in the Type-II Methionyl Aminopeptidase fromPyrococcusfuriosus. Inorganic Chemistry, 2005, 44, 1160-1162.	4.0	21
42	Evaluation of the influence of a thioether substituent on the solid state and solution properties of N3S-ligated copper(ii) complexes. Dalton Transactions, 2003, , 3111-3116.	3.3	13
43	Structurally Distinct Active Sites in the Copper(II)-Substituted Aminopeptidases fromAeromonasproteolyticaandEscherichiacoli. Journal of the American Chemical Society, 2002, 124, 13025-13034.	13.7	34
44	Spectroscopic Characterisation of an Aconitase (AcnA) of Escherichia coli. FEBS Journal, 1995, 233, 317-326.	0.2	16
45	Multiple States of the Molybdenum Centre of Dimethylsulphoxide Reductase from Rhodobacter Capsulatus Revealed by EPR Spectroscopy. FEBS Journal, 1994, 225, 321-331.	0.2	84
46	Redox-related activation and deactivation of <i>E. coli</i> nitrate reductase: kinetic and spectroscopic studies. Biochemical Society Transactions, 1994, 22, 78S-78S.	3.4	3
47	E.p.r. characterisation of the molybdenum centre of <i>Rhodobacter capsulatus</i> dimethylsulphoxide reductase: new signals on reduction with Na2S2O4. Biochemical Society Transactions, 1994, 22, 285S-285S.	3.4	7
48	Roles of molybdenum, FAD and iron-sulphur domains in molybdenum-containing hydroxylases: molecular genetic, kinetic and spectroscopic studies. Biochemical Society Transactions, 1991, 19, 260S-260S.	3.4	4