John J Orr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8467822/publications.pdf

Version: 2024-02-01

759190 752679 37 448 12 20 citations h-index g-index papers 40 40 40 271 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The social acceptance of mass produced residential buildings among Hungarian young adults. Architectural Engineering and Design Management, 2023, 19, 148-162.	1.7	5
2	Reducing embodied carbon dioxide of structural concrete with lightweight aggregate. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2022, 175, 75-83.	0.7	4
3	Predicting shear failure in reinforced concrete members using a three-dimensional peridynamic framework. Computers and Structures, 2022, 258, 106682.	4.4	12
4	Minimising embodied carbon in reinforced concrete flat slabs through parametric design. Journal of Building Engineering, 2022, 50, 104136.	3.4	5
5	Comparing different strategies of minimising embodied carbon in concrete floors. Journal of Cleaner Production, 2022, 345, 131177.	9.3	21
6	An examination of the size effect in quasi-brittle materials using a bond-based peridynamic model. Engineering Structures, 2022, 262, 114207.	5.3	9
7	ARCS: Automated Robotic Concrete Spraying for the Fabrication of Variable Thickness Doubly Curved Shells. RILEM Bookseries, 2022, , 267-273.	0.4	1
8	A Review on the Developments of Peridynamics for Reinforced Concrete Structures. Archives of Computational Methods in Engineering, 2021, 28, 4655-4686.	10.2	12
9	Shear design method for non-prismatic concrete beams reinforced using W-FRP. Structures, 2021, 30, 667-677.	3.6	1
10	Minimising embodied carbon in reinforced concrete beams. Engineering Structures, 2021, 242, 112590.	5 . 3	15
11	Quantification of uncertainty in product stage embodied carbon calculations for buildings. Energy and Buildings, 2021, 251, 111340.	6.7	15
12	The importance of thermal modelling and prototyping in shelter design. Building Research and Information, 2020, 48, 379-400.	3.9	5
13	The Lightest Beam Method – A methodology to find ultimate steel savings and reduce embodied carbon in steel framed buildings. Structures, 2020, 27, 687-701.	3.6	7
14	Seismic performance of a load-bearing prefabricated composite wall panel structure for residential construction. Advances in Structural Engineering, 2020, 23, 2928-2941.	2.4	1
15	Shear behaviour of fabric formed T beams reinforced using W-FRP. Structures, 2020, 24, 869-879.	3.6	7
16	A design methodology to reduce the embodied carbon of concrete buildings using thin-shell floors. Engineering Structures, 2020, 207, 110195.	5.3	30
17	Automating Concrete Construction: Digital Design of Non-prismatic Reinforced Concrete Beams. RILEM Bookseries, 2020, , 863-872.	0.4	4
18	Serviceability of non-prismatic concrete beams: Combined-interaction method. Engineering Structures, 2019, 191, 766-774.	5. 3	6

#	Article	IF	CITATIONS
19	India looks at using plastic waste as a partial replacement for sand in structural concrete. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2019, 172, 11-11.	0.3	1
20	Design, Construction and Testing of a Low Carbon Thin-Shell Concrete Flooring System. Structures, 2019, 18, 60-71.	3.6	16
21	Minimising energy in construction: Practitioners' views on material efficiency. Resources, Conservation and Recycling, 2019, 140, 125-136.	10.8	50
22	Response of concrete cast in permeable moulds to severe heating. Construction and Building Materials, 2018, 160, 526-538.	7.2	5
23	Fast interaction functions for bond-based peridynamics. European Journal of Computational Mechanics, 2018, 27, 247-276.	0.6	2
24	Shear Behavior of Variable-Depth Concrete Beams with Wound Fiber–Reinforced Polymer Shear Reinforcement. Journal of Composites for Construction, 2018, 22, .	3.2	9
25	An Analytical Failure Envelope for the Design of Textile Reinforced Concrete Shells. Structures, 2018, 15, 56-65.	3.6	22
26	Wound FRP for Concrete Beams with Optimised Geometries., 2018,, 2466-2473.		0
27	Biogas Dome Construction Using Pneumatics. Journal of Construction in Developing Countries, 2018, 22, 35-53.	0.6	1
28	Effectiveness of design codes for life cycle energy optimisation. Energy and Buildings, 2017, 140, 61-67.	6.7	10
29	Wound FRP Shear Reinforcement for Concrete Structures. Journal of Composites for Construction, 2017, 21, .	3.2	25
30	Bend-strength of novel filament wound shear reinforcement. Composite Structures, 2017, 176, 244-253.	5.8	27
31	Flexible formwork technologies – a state of the art review. Structural Concrete, 2016, 17, 911-935.	3.1	76
32	Birmingham Gateway: structural assessment and strengthening. Structural Concrete, 2015, 16, 458-469.	3.1	1
33	Day one sustainability. European Journal of Engineering Education, 2015, 40, 285-296.	2.3	3
34	Design methods for flexibly formed concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2014, 167, 654-666.	0.8	9
35	Shear behaviour of non-prismatic steel reinforced concrete beams. Engineering Structures, 2014, 71, 48-59.	5. 3	18
36	Durability enhancements using fabric formwork. Magazine of Concrete Research, 2013, 65, 1236-1245.	2.0	9

#	Article	IF	CITATIONS
37	Extraordinary possibilities for future concrete structures. IES Journal Part A: Civil and Structural Engineering, 2013, 6, 239-248.	0.4	2