Ralph D Sanderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8467688/publications.pdf Version: 2024-02-01

RAIDH D SANDERSON

#	Article	IF	CITATIONS
1	Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood, 2002, 99, 1745-1757.	1.4	590
2	Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. Journal of Cellular and Molecular Medicine, 2011, 15, 1013-1031.	3.6	484
3	Heparanase Regulates Secretion, Composition, and Function of Tumor Cell-derived Exosomes. Journal of Biological Chemistry, 2013, 288, 10093-10099.	3.4	277
4	Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chemical Reviews, 2018, 118, 9152-9232.	47.7	253
5	The Cysteine-Rich Domain of Human Adam 12 Supports Cell Adhesion through Syndecans and Triggers Signaling Events That Lead to β1 Integrin–Dependent Cell Spreading. Journal of Cell Biology, 2000, 149, 1143-1156.	5.2	244
6	Heparanase Enhances Syndecan-1 Shedding. Journal of Biological Chemistry, 2007, 282, 13326-13333.	3.4	237
7	Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood, 2002, 100, 3002-3007.	1.4	227
8	Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions. Journal of Biological Chemistry, 2016, 291, 1652-1663.	3.4	219
9	SST0001, a Chemically Modified Heparin, Inhibits Myeloma Growth and Angiogenesis via Disruption of the Heparanase/Syndecan-1 Axis. Clinical Cancer Research, 2011, 17, 1382-1393.	7.0	217
10	Heparanase: busy at the cell surface. Trends in Biochemical Sciences, 2009, 34, 511-519.	7.5	216
11	The epidermal growth factor–like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood, 2003, 102, 2916-2924.	1.4	207
12	Heparan sulfate proteoglycans in invasion and metastasis. Seminars in Cell and Developmental Biology, 2001, 12, 89-98.	5.0	200
13	Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 2010, 115, 2449-2457.	1.4	198
14	Heparan sulfate proteoglycans and heparanase—partners in osteolytic tumor growth and metastasis. Matrix Biology, 2004, 23, 341-352.	3.6	186
15	Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS Journal, 2017, 284, 42-55.	4.7	182
16	Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resistance Updates, 2016, 29, 54-75.	14.4	180
17	Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood, 2002, 100, 610-617.	1.4	178
18	Heparanase Stimulation of Protease Expression Implicates It as a Master Regulator of the Aggressive Tumor Phenotype in Myeloma, Journal of Biological Chemistry, 2008, 283, 32628-32636	3.4	174

#	Article	IF	CITATIONS
19	Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biology, 2018, 65, 104-118.	3.6	172
20	Functional and molecular characterization of single, (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific, IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. European Journal of Immunology, 1992, 22, 3001-3011.	2.9	169
21	The heparanase/syndecanâ€1 axis in cancer: mechanisms and therapies. FEBS Journal, 2013, 280, 2294-2306.	4.7	156
22	Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS Journal, 2010, 277, 3890-3903.	4.7	148
23	Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: Growth regulation and the prospect of new cancer therapies. Journal of Cellular Biochemistry, 2005, 96, 897-905.	2.6	146
24	Non-Anticoagulant Heparins and Inhibition of Cancer. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 2007, 36, 195-203.	0.3	146
25	Heparan Sulfate Proteoglycans as Adhesive and Anti-invasive Molecules. Journal of Biological Chemistry, 1998, 273, 22825-22832.	3.4	144
26	High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Research, 2003, 63, 8749-56.	0.9	138
27	Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood, 2005, 105, 1303-1309.	1.4	130
28	Heparanase Degrades Syndecan-1 and Perlecan Heparan Sulfate. Journal of Biological Chemistry, 2004, 279, 8047-8055.	3.4	129
29	Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nature Communications, 2015, 6, 6985.	12.8	128
30	Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Matrix Biology, 2019, 75-76, 160-169.	3.6	123
31	HSulf-1 and HSulf-2 Are Potent Inhibitors of Myeloma Tumor Growth in Vivo. Journal of Biological Chemistry, 2005, 280, 40066-40073.	3.4	122
32	The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood, 2007, 110, 2041-2048.	1.4	122
33	Syndecan-1 Expression Is Induced in the Stroma of Infiltrating Breast Carcinoma. American Journal of Clinical Pathology, 1999, 112, 377-383.	0.7	118
34	Syndecan-1 (CD138) Immunoreactivity in Bone Marrow Biopsies of Multiple Myeloma: Shed Syndecan-1 Accumulates in Fibrotic Regions. Modern Pathology, 2001, 14, 1052-1058.	5.5	117
35	Opposing Functions of Heparanase-1 and Heparanase-2 in Cancer Progression. Trends in Biochemical Sciences, 2018, 43, 18-31.	7.5	117
36	Syndecan-1: a dynamic regulator of the myeloma microenvironment. Clinical and Experimental Metastasis, 2008, 25, 149-159.	3.3	109

#	Article	IF	CITATIONS
37	Heparanase Plays a Dual Role in Driving Hepatocyte Growth Factor (HGF) Signaling by Enhancing HGF Expression and Activity. Journal of Biological Chemistry, 2011, 286, 6490-6499.	3.4	104
38	Heparan Sulfate Chains of Syndecan-1 Regulate Ectodomain Shedding. Journal of Biological Chemistry, 2012, 287, 9952-9961.	3.4	104
39	Syndecan-1 is targeted to the uropods of polarized myeloma cells where it promotes adhesion and sequesters heparin-binding proteins. Blood, 2000, 96, 2528-2536.	1.4	103
40	Expression of Heparanase by Primary Breast Tumors Promotes Bone Resorption in the Absence of Detectable Bone Metastases. Cancer Research, 2005, 65, 5778-5784.	0.9	101
41	Heparan Sulfate-mediated Cell Aggregation. Journal of Biological Chemistry, 1995, 270, 5077-5083.	3.4	98
42	Heparanase-mediated Loss of Nuclear Syndecan-1 Enhances Histone Acetyltransferase (HAT) Activity to Promote Expression of Genes That Drive an Aggressive Tumor Phenotype. Journal of Biological Chemistry, 2011, 286, 30377-30383.	3.4	98
43	Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 276-300.	7.4	96
44	Elevated levels of shed syndecan-1 correlate with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma. British Journal of Haematology, 1997, 99, 368-371.	2.5	94
45	Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biology, 2014, 35, 56-59.	3.6	93
46	High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood, 2000, 96, 3139-3146.	1.4	91
47	Heparanase Regulates Levels of Syndecan-1 in the Nucleus. PLoS ONE, 2009, 4, e4947.	2.5	91
48	Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy. Haematologica, 2018, 103, e469-e472.	3.5	90
49	Syndecan-1, a Cell-Surface Proteoglycan, Changes in Size and Abundance when Keratinocytes Stratify. Journal of Investigative Dermatology, 1992, 99, 390-396.	0.7	87
50	Multiple Heparan Sulfate Chains Are Required for Optimal Syndecan-1 Function. Journal of Biological Chemistry, 1998, 273, 29965-29971.	3.4	83
51	Syndecan-1 Is Required for Robust Growth, Vascularization, and Metastasis of Myeloma Tumors in Vivo. Journal of Biological Chemistry, 2009, 284, 26085-26095.	3.4	78
52	Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma. Oncotarget, 2016, 7, 1598-1607.	1.8	76
53	Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biology, 2016, 55, 22-34.	3.6	70
54	Fibronectin on the Surface of Extracellular Vesicles Mediates Fibroblast Invasion. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 279-288.	2.9	68

#	Article	IF	CITATIONS
55	Chemotherapy stimulates syndecan-1 shedding: A potentially negative effect of treatment that may promote tumor relapse. Matrix Biology, 2014, 35, 215-222.	3.6	62
56	Heparanase Enhances Local and Systemic Osteolysis in Multiple Myeloma by Upregulating the Expression and Secretion of RANKL. Cancer Research, 2010, 70, 8329-8338.	0.9	60
57	Epithelial-mesenchymal interactions in uterus and vagina alter the expression of the cell surface proteoglycan, syndecan. Developmental Biology, 1991, 148, 63-74.	2.0	59
58	The Extracellular Matrix of Skeletal Muscle. Collagen and Related Research, 1985, 5, 449-468.	2.0	58
59	Nonâ€enzymatic glycation of type I collagen diminishes collagen–proteoglycan binding and weakens cell adhesion. Journal of Cellular Biochemistry, 2008, 104, 1684-1698.	2.6	57
60	Shed Syndecan-1 Translocates to the Nucleus of Cells Delivering Growth Factors and Inhibiting Histone Acetylation. Journal of Biological Chemistry, 2015, 290, 941-949.	3.4	55
61	Sperm protein 17 is expressed on normal and malignant lymphocytes and promotes heparan sulfate–mediated cell-cell adhesion. Blood, 2001, 98, 2160-2165.	1.4	53
62	Heparanase: Multiple functions in inflammation, diabetes and atherosclerosis. Matrix Biology, 2013, 32, 220-222.	3.6	53
63	Syndecan-1 (CD 138) in Myeloma and Lymphoid Malignancies: A Multifunctional Regulator of Cell Behavior Within the Tumor Microenvironment. Leukemia and Lymphoma, 1999, 34, 35-43.	1.3	50
64	Matrix Metalloproteinases in Multiple Myeloma. Leukemia and Lymphoma, 2000, 37, 273-281.	1.3	48
65	Syndecan-1 (CD138) Suppresses Apoptosis in Multiple Myeloma by Activating IGF1 Receptor: Prevention by SynstatinIGF1R Inhibits Tumor Growth. Cancer Research, 2016, 76, 4981-4993.	0.9	48
66	Forty Years of Basic and Translational Heparanase Research. Advances in Experimental Medicine and Biology, 2020, 1221, 3-59.	1.6	48
67	Neoglycans, carbodiimide-modified glycosaminoglycans: a new class of anticancer agents that inhibit cancer cell proliferation and induce apoptosis. Cancer Research, 2002, 62, 3722-8.	0.9	47
68	Identification of an Invasion Regulatory Domain within the Core Protein of Syndecan-1. Journal of Biological Chemistry, 2005, 280, 3467-3473.	3.4	46
69	Heparanase Enhances the Insulin Receptor Signaling Pathway to Activate Extracellular Signal-regulated Kinase in Multiple Myeloma. Journal of Biological Chemistry, 2012, 287, 41288-41296.	3.4	44
70	Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone, 2013, 57, 10-17.	2.9	43
71	Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. Journal of Histochemistry and Cytochemistry, 2020, 68, 823-840.	2.5	43
72	Syndecan-1 Expression Is Decreased With Increasing Aggressiveness of Basal Cell Carcinoma. American Journal of Dermatopathology, 2000, 22, 119-122.	0.6	41

#	Article	IF	CITATIONS
73	Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer. F1000Research, 2016, 5, 1541.	1.6	38
74	Interleukin-6 Regulates Expression of the Syndecan-1 Proteoglycan on B Lymphoid Cells. Cellular Immunology, 1994, 153, 456-467.	3.0	37
75	The Level of Syndecan-1 Expression is a Distinguishing Feature in Behavior between Keratoacanthoma and Invasive Cutaneous Squamous Cell Carcinoma. Modern Pathology, 2002, 15, 45-49.	5.5	36
76	Tumor-derived syndecan-1 mediates distal cross-talk with bone that enhances osteoclastogenesis. Journal of Bone and Mineral Research, 2010, 25, 1295-1304.	2.8	35
77	Family history of hematologic malignancies and risk of multiple myeloma: differences by race and clinical features. Cancer Causes and Control, 2016, 27, 81-91.	1.8	35
78	Heparanase and Chemotherapy Synergize to Drive Macrophage Activation and Enhance Tumor Growth. Cancer Research, 2020, 80, 57-68.	0.9	32
79	Syndecan-1 expression suppresses the level of myeloma matrix metalloproteinase-9. British Journal of Haematology, 1999, 104, 365-373.	2.5	30
80	Changes in the synthesis of minor cartilage collagens after growth of chick chondrocytes in 5-bromo-2′-deoxyuridine or to senescence. Experimental Cell Research, 1984, 151, 171-182.	2.6	26
81	Syndecan-1 expression is diminished in acantholytic cutaneous squamous cell carcinoma. Journal of Cutaneous Pathology, 1999, 26, 386-390.	1.3	26
82	Heparan Sulfate Regulates Targeting of Syndecan-1 to a Functional Domain on the Cell Surface. Journal of Biological Chemistry, 2003, 278, 12888-12893.	3.4	25
83	Syndecan-1 is Strongly Expressed in the Anagen Hair Follicle Outer Root Sheath and in the Dermal Papilla but Expression Diminishes With Involution of the Hair Follicle. American Journal of Dermatopathology, 2002, 24, 484-489.	0.6	24
84	Heparanase promotes myeloma stemness and in vivo tumorigenesis. Matrix Biology, 2020, 88, 53-68.	3.6	24
85	Significance of host heparanase in promoting tumor growth and metastasis. Matrix Biology, 2020, 93, 25-42.	3.6	21
86	Heparanase: A Dynamic Promoter of Myeloma Progression. Advances in Experimental Medicine and Biology, 2020, 1221, 331-349.	1.6	19
87	Acantholysis and spongiosis are associated with loss of syndecan-1 expression. Journal of Cutaneous Pathology, 2001, 28, 135-139.	1.3	17
88	Heparanase Blockade as a Novel Dual-Targeting Therapy for COVID-19. Journal of Virology, 2022, 96, e0005722.	3.4	14
89	Expression of syndecan-1 is a sensitive marker for cutaneous plasmacytoma. Journal of Cutaneous Pathology, 2003, 30, 18-22.	1.3	12
90	Vitronectin's Basic Domain is a Syndecan Ligand which Functions in trans to Regulate Vitronectin Turnover. Cell Communication and Adhesion, 2003, 10, 85-103.	1.0	12

#	Article	IF	CITATIONS
91	Myeloma Bone Disease. Journal of Bone and Mineral Research, 2009, 24, 1783-1788.	2.8	11
92	Nuclear Heparanase Regulates Chromatin Remodeling, Gene Expression and PTEN Tumor Suppressor Function. Cells, 2020, 9, 2038.	4.1	11
93	Roneparstat (SST0001), an Innovative Heparanase (HPSE) Inhibitor for Multiple Myeloma (MM) Therapy: First in Man Study. Blood, 2015, 126, 3246-3246.	1.4	10
94	Mesenchymal stem cells expressing osteoprotegerin variants inhibit osteolysis in a murine model of multiple myeloma. Blood Advances, 2017, 1, 2375-2385.	5.2	8
95	Induction of heparanase 2 (Hpa2) expression by stress is mediated by ATF3. Matrix Biology, 2022, 105, 17-30.	3.6	7
96	Therapy-induced chemoexosomes: Sinister small extracellular vesicles that support tumor survival and progression. Cancer Letters, 2020, 493, 113-119.	7.2	5
97	Extracellular Endosulfatases (Sulfs) Inhibit Myeloma Tumor Growth In Vivo Blood, 2005, 106, 3386-3386.	1.4	3
98	A Heparin-Based Inhibitor of Heparanase Blocks Myeloma Growth In Vivo by Targeting the Tumor Microenvironment Blood, 2007, 110, 1502-1502.	1.4	3
99	Heparanase Promotes the Spontaneous Metastasis of Myeloma Cells to Bone Blood, 2004, 104, 635-635.	1.4	1
100	The Heparanase Inhibitor SST0001 Is a Potent Inhibitor of Myeloma Growth In Vivo. Blood, 2008, 112, 246-246.	1.4	1
101	Syndecans as Anti-invasive Molecules on the Surface of Tumor Cells Trends in Glycoscience and Glycotechnology, 1995, 7, 513-524.	0.1	1
102	Runx2 Transcription Factor Regulates Heparanase-Induced Bone Resorption in Multiple Myeloma. Blood, 2012, 120, 567-567.	1.4	1
103	Shed syndecanâ€1 drives tumor progression by binding to the cell surface and translocating to the nucleus. FASEB Journal, 2013, 27, 595.1.	0.5	1
104	Dynamic Remodeling of Syndecan-1 Structure Regulates. Trends in Glycoscience and Glycotechnology, 2005, 17, 263-270.	0.1	0
105	Heparanase Upregulates Synthesis and Expression of Syndecan-1 (CD138) - A Novel Growth Regulatory Loop for Myeloma Tumors Blood, 2005, 106, 625-625.	1.4	0
106	Expression of Soluble Syndecan-1 or Heparanase by Myeloma Cells Enhances Levels of Angiogenic Growth Factors Present in Endothelial Cells Blood, 2006, 108, 3448-3448.	1.4	0
107	Heparanase Promotes the Osteolytic Phenotype in Multiple Myeloma. Blood, 2008, 112, 841-841.	1.4	0
108	Anti-Heparanase Therapy in Combination with Conventional Chemotherapy Potently Inhibits Multiple Myeloma Growth in Vivo. Blood, 2008, 112, 5165-5165.	1.4	0

#	Article	IF	CITATIONS
109	Heparanase Promotes Osteolysis by Upregulating RANKL– A Novel Role for Heparanase in Multiple Myeloma Blood, 2009, 114, 2821-2821.	1.4	0
110	Heparanase Regulates Response to Proteasomal Inhibition in Myeloma. Blood, 2012, 120, 4902-4902.	1.4	0