Se-Hee Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8467538/publications.pdf Version: 2024-02-01

SE-HEELER

#	Article	IF	CITATIONS
1	Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie - International Edition, 2016, 55, 1737-1741.	13.8	503
2	Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Liâ€lon Batteries. Advanced Materials, 2010, 22, 2172-2176.	21.0	486
3	Ultrathin Coatings on Nano-LiCoO ₂ for Li-Ion Vehicular Applications. Nano Letters, 2011, 11, 414-418.	9.1	357
4	Reversible Lithiumâ€lon Insertion in Molybdenum Oxide Nanoparticles. Advanced Materials, 2008, 20, 3627-3632.	21.0	330
5	Enhanced Stability of LiCoO[sub 2] Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition. Journal of the Electrochemical Society, 2010, 157, A75.	2.9	319
6	Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. Journal of the American Chemical Society, 2019, 141, 7518-7525.	13.7	261
7	Improved Functionality of Lithiumâ€lon Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes. Advanced Energy Materials, 2012, 2, 1022-1027.	19.5	213
8	Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nature Communications, 2015, 6, 6230.	12.8	212
9	Unexpected Improved Performance of ALD Coated LiCoO ₂ /Graphite Liâ€ l on Batteries. Advanced Energy Materials, 2013, 3, 213-219.	19.5	206
10	Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. Journal of Power Sources, 2011, 196, 3317-3324.	7.8	198
11	Ultraâ€thin Solidâ€State Liâ€lon Electrolyte Membrane Facilitated by a Selfâ€Healing Polymer Matrix. Advanced Materials, 2015, 27, 6922-6927.	21.0	182
12	Using Atomic Layer Deposition to Hinder Solvent Decomposition in Lithium Ion Batteries: First-Principles Modeling and Experimental Studies. Journal of the American Chemical Society, 2011, 133, 14741-14754.	13.7	174
13	Nanoscale Interface Modification of LiCoO ₂ by Al ₂ O ₃ Atomic Layer Deposition for Solid-State Li Batteries. Journal of the Electrochemical Society, 2012, 159, A1120-A1124.	2.9	173
14	Reversible High apacity Si Nanocomposite Anodes for Lithiumâ€ion Batteries Enabled by Molecular Layer Deposition. Advanced Materials, 2014, 26, 1596-1601.	21.0	169
15	Solid State Enabled Reversible Four Electron Storage. Advanced Energy Materials, 2013, 3, 120-127.	19.5	155
16	Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor. Journal of the Electrochemical Society, 2014, 161, A1812-A1817.	2.9	137
17	Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode. Journal of Power Sources, 2012, 206, 267-273.	7.8	136
18	Conformal Coatings of Cyclizedâ€₽AN for Mechanically Resilient Si nano omposite Anodes. Advanced Energy Materials, 2013, 3, 697-702.	19.5	134

#	Article	IF	CITATIONS
19	Stress generation in silicon particles during lithium insertion. Applied Physics Letters, 2010, 97, .	3.3	128
20	Conformal Surface Coatings to Enable High Volume Expansion Liâ€lon Anode Materials. ChemPhysChem, 2010, 11, 2124-2130.	2.1	126
21	Electrochemical reactivity of ball-milled MoO3â^'y as anode materials for lithium-ion batteries. Journal of Power Sources, 2009, 188, 286-291.	7.8	125
22	Effect of Compressive Stress on Electrochemical Performance of Silicon Anodes. Journal of the Electrochemical Society, 2013, 160, A77-A81.	2.9	119
23	lonic Liquid Enabled FeS ₂ for Highâ€Energyâ€Density Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 7386-7392.	21.0	116
24	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie - International Edition, 2020, 59, 20385-20389.	13.8	110
25	Anodic properties of hollow carbon nanofibers for Li-ion battery. Journal of Power Sources, 2012, 199, 53-60.	7.8	109
26	A Stabilized PANâ€FeS ₂ Cathode with an EC/DEC Liquid Electrolyte. Advanced Energy Materials, 2014, 4, 1300961.	19.5	100
27	Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries. Electrochemistry Communications, 2009, 11, 1830-1833.	4.7	99
28	A Highly Reversible Nanoâ€ s i Anode Enabled by Mechanical Confinement in an Electrochemically Activated Li _x Ti ₄ Ni ₄ Si ₇ Matrix. Advanced Energy Materials, 2012, 2, 1226-1231.	19.5	94
29	Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. EnergyChem, 2021, 3, 100048.	19.1	94
30	Effect of Pores in Hollow Carbon Nanofibers on Their Negative Electrode Properties for a Lithium Rechargeable Battery. ACS Applied Materials & Interfaces, 2012, 4, 6702-6710.	8.0	84
31	Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes. Journal of Power Sources, 2014, 254, 190-197.	7.8	73
32	High lithium ion conducting Li2S–GeS2–P2S5 glass–ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries. Electrochimica Acta, 2011, 56, 4243-4247.	5.2	68
33	Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode. RSC Advances, 2012, 2, 8281.	3.6	62
34	Microstructure Study of Electrochemically Driven Li _x Si. Advanced Energy Materials, 2011, 1, 1199-1204.	19.5	61
35	Nanostructured all-solid-state supercapacitor based on Li ₂ S-P ₂ S ₅ glass-ceramic electrolyte. Applied Physics Letters, 2012, 100, 103902.	3.3	61
36	Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries. Journal of Power Sources, 2015, 292, 1-6.	7.8	52

#	Article	IF	CITATIONS
37	FeS ₂ â€Imbedded Mixed Conducting Matrix as a Solid Battery Cathode. Advanced Energy Materials, 2016, 6, 1600495.	19.5	50
38	An All-Solid-State Li-Ion Battery with a Pre-Lithiated Si-Ti-Ni Alloy Anode. Journal of the Electrochemical Society, 2013, 160, A1497-A1501.	2.9	49
39	Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 11021-11030.	10.3	49
40	Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion battery anodes. Nano Energy, 2013, 2, 943-950.	16.0	47
41	Hierarchical Porous Framework of Siâ€Based Electrodes for Minimal Volumetric Expansion. Advanced Materials, 2014, 26, 3520-3525.	21.0	47
42	Improved Performance of All-Solid-State Lithium-Ion Batteries Using Nanosilicon Active Material with Multiwalled-Carbon-Nanotubes as a Conductive Additive. Electrochemical and Solid-State Letters, 2010, 13, A154.	2.2	46
43	Utilization of Al ₂ O ₃ Atomic Layer Deposition for Li Ion Pathways in Solid State Li Batteries. Journal of the Electrochemical Society, 2015, 162, A344-A349.	2.9	45
44	Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon. Journal of Power Sources, 2014, 265, 160-165.	7.8	38
45	Facile conductive bridges formed between silicon nanoparticles inside hollow carbon nanofibers. Nanoscale, 2013, 5, 4790.	5.6	37
46	Effect of organic solvent addition to PYR13FSIÂ+ÂLiFSI electrolytes on aluminum oxidation and rate performance of Li(Ni1/3Mn1/3Co1/3)O2 cathodes. Journal of Power Sources, 2014, 265, 132-139.	7.8	37
47	Optimized Silicon Electrode Architecture, Interface, and Microgeometry for Nextâ€Generation Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 188-193.	21.0	37
48	Enhancing Ni–Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces. Journal of Power Sources, 2011, 196, 10207-10212.	7.8	36
49	Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries. Solid State Ionics, 2018, 324, 207-217.	2.7	36
50	Improved Stability and Rate Capability of Ionic Liquid Electrolyte with High Concentration of LiFSI . Journal of the Electrochemical Society, 2019, 166, A1860-A1866.	2.9	35
51	Tin Networked Electrode Providing Enhanced Volumetric Capacity and Pressureless Operation for All-Solid-State Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A711-A715.	2.9	32
52	Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries. Journal of Power Sources, 2010, 195, 4984-4989.	7.8	28
53	High-Energy Nickel-Rich Layered Cathode Stabilized by Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2019, 166, A873-A879.	2.9	27
54	Corrosion of stainless steel battery components by bis(fluorosulfonyl)imide based ionic liquid electrolytes. Journal of Power Sources, 2014, 269, 616-620.	7.8	26

#	Article	IF	CITATIONS
55	In Situ Engineering of the Electrode–Electrolyte Interface for Stabilized Overlithiated Cathodes. Advanced Materials, 2017, 29, 1604549.	21.0	26
56	Electrochemical Evolution of an Iron Sulfide and Sulfur Based Cathode for All-Solid-State Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1009-A1015.	2.9	25
57	High-Capacity and Highly Reversible Silicon-Tin Hybrid Anode for Solid-State Lithium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A251-A254.	2.9	25
58	Towards the Commercialization of the All-Solid-State Li-ion Battery: Local Bonding Structure and the Reversibility of Sheet-Style Si-PAN Anodes. Journal of the Electrochemical Society, 2020, 167, 060522.	2.9	25
59	Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries. Solid State Ionics, 2012, 214, 25-30.	2.7	24
60	Designing thermal and electrochemical oxidation processes for δ-MnO ₂ nanofibers for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2014, 2, 7197-7204.	10.3	23
61	Helical Covalent Polymers with Unidirectional Ion Channels as Single Lithium-Ion Conducting Electrolytes. CCS Chemistry, 2021, 3, 2762-2770.	7.8	23
62	Pd effect on reliability of Ag bonding wires in microelectronic devices in high-humidity environments. Metals and Materials International, 2012, 18, 881-885.	3.4	22
63	Nonuniform Ionic and Electronic Transport of Ceramic and Polymer/Ceramic Hybrid Electrolyte by Nanometerâ€Scale Operando Imaging for Solidâ€State Battery. Advanced Energy Materials, 2020, 10, 2000219.	19.5	22
64	Electrochemically induced and orientation dependent crack propagation in single crystal silicon. Journal of Power Sources, 2014, 267, 739-743.	7.8	21
65	Efficient photocatalytic degradation of acid orange 7 on metal oxide p–n junction composites under visible light. Journal of Physics and Chemistry of Solids, 2012, 73, 1372-1377.	4.0	19
66	Nanostructured Si/C Fibers as a Highly Reversible Anode Material for All-Solid-State Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1903-A1908.	2.9	19
67	Lithium Dendrite Growth Suppression and Ionic Conductivity of Li ₂ S-P ₂ S ₅ -P ₂ O ₅ ÂGlass Solid Electrolytes Prepared by Mechanical Milling. Journal of the Electrochemical Society, 2019, 166, A3997-A4004.	2.9	19
68	Effect of Amorphous LiPON Coating on Electrochemical Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ (NMC811) in All Solid-State Batteries. Journal of the Electrochemical Society, 2021, 168, 060537.	2.9	18
69	Derivation of an Iron Pyrite All-Solid-State Composite Electrode with Ferrophosphorus, Sulfur, and Lithium Sulfide as Precursors. Journal of the Electrochemical Society, 2014, 161, A663-A667.	2.9	16
70	Nanostructured silicon electrodes for solid-state 3-d rechargeable lithium batteries. Sensors and Actuators A: Physical, 2011, 167, 139-145.	4.1	15
71	Slurry-Coated Sheet-Style Sn-PAN Anodes for All-Solid-State Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A915-A922.	2.9	15
72	Mitigating irreversible capacity losses from carbon agents via surface modification. Journal of Power Sources, 2015, 275, 605-611.	7.8	14

#	Article	IF	CITATIONS
73	In situ lithiation of TiS2 enabled by spontaneous decomposition of Li3N. Journal of Power Sources, 2011, 196, 9830-9834.	7.8	13
74	All-solid-state disordered LiTiS2pseudocapacitor. Journal of Materials Chemistry A, 2017, 5, 15661-15668.	10.3	13
75	The effect of energetically coated ZrO _x on enhanced electrochemical performances of Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ cathodes using modified radio frequency (RF) sputtering. Journal of Materials Chemistry A, 2015, 3, 12982-12991.	10.3	12
76	Stable Lithium Deposition Using a Self-Optimizing Solid Electrolyte Composite. Journal of the Electrochemical Society, 2017, 164, A2962-A2966.	2.9	12
77	Self-Contained Fragmentation and Interfacial Stability in Crude Micron-Silicon Anodes. Journal of the Electrochemical Society, 2018, 165, A244-A250.	2.9	10
78	Doped Si nanoparticles with conformal carbon coating and cyclized-polyacrylonitrile network as high-capacity and high-rate lithium-ion battery anodes. Nanotechnology, 2015, 26, 365401.	2.6	9
79	Observations of stress accumulation and relaxation in solidâ€state lithiation and delithiation of suspended Si microcantilevers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2156-2168.	1.8	7
80	Electrochemical Analysis of Factors Affecting the Kinetic Capabilities of an Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2019, 166, A1677-A1684.	2.9	7
81	Ex Situ Investigation of Anisotropic Interconnection in Silicon-Titanium-Nickel Alloy Anode Material. Journal of the Electrochemical Society, 2017, 164, A968-A972.	2.9	5
82	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie, 2020, 132, 20565-20569.	2.0	5
83	Solid State Electrolytes: Nonuniform Ionic and Electronic Transport of Ceramic and Polymer/Ceramic Hybrid Electrolyte by Nanometerâ€Scale Operando Imaging for Solidâ€State Battery (Adv. Energy Mater.) Tj ETQv	q11 ∮.⊖ .784	43å4 rgBT /(
84	Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent. Electronic Materials Letters, 2018, 14, 79-82.	2.2	2
85	Effect of Polyacrylonitrile Surface Coating on Electrochemical Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ in All Solid-State Batteries. Journal of the Electrochemical Society, 2022, 169, 060541.	2.9	2
86	Advancing Conversion Electrode Reversibility with Bulk Solid-State Batteries. Materials and Energy, 2015, , 627-655.	2.5	0