
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8467398/publications.pdf Version: 2024-02-01



FEIDENC 7HAO

| #  | Article                                                                                                                                                                                                            | IF                            | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|
| 1  | Emerging Characterization Techniques for Electrode Interfaces in Sulfideâ€Based Allâ€Solidâ€State Lithium<br>Batteries. Small Structures, 2022, 3, 2100146.                                                        | 12.0                          | 21        |
| 2  | Antiperovskite Electrolytes for Solid-State Batteries. Chemical Reviews, 2022, 122, 3763-3819.                                                                                                                     | 47.7                          | 96        |
| 3  | Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews, 2021, 50, 3889-3956.                                                                                                | 38.1                          | 109       |
| 4  | Insight into MoS <sub>2</sub> –MoN Heterostructure to Accelerate Polysulfide Conversion toward<br>Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003314.                    | 19.5                          | 159       |
| 5  | Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance<br>lithium-rich manganese-based layered oxides. Energy Storage Materials, 2021, 37, 509-520.                    | 18.0                          | 55        |
| 6  | Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis,<br>structure, stability and dynamics. Nano Energy, 2021, 83, 105858.                                       | 16.0                          | 140       |
| 7  | New Insights into the Highâ€Performance Black Phosphorus Anode for Lithiumâ€lon Batteries. Advanced<br>Materials, 2021, 33, e2101259.                                                                              | 21.0                          | 41        |
| 8  | Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte.<br>Advanced Energy Materials, 2021, 11, 2100836.                                                          | 19.5                          | 64        |
| 9  | Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Liâ€Metal in Allâ€Solidâ€State Li<br>Batteries. Advanced Energy Materials, 2021, 11, 2101915.                                                   | 19.5                          | 61        |
| 10 | A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Science Advances, 2021, 7, eabh1896.                                                           | 10.3                          | 93        |
| 11 | A liquid-free poly(butylene oxide) electrolyte for near-room-temperature and 4-V class all-solid-state<br>lithium batteries. Nano Energy, 2021, 90, 106566.                                                        | 16.0                          | 7         |
| 12 | An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solidâ<br>Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.                                          | € <mark>S</mark> tate<br>21.0 | 82        |
| 13 | Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for<br>all-solid-state high voltage LiCoO <sub>2</sub> batteries. Journal of Materials Chemistry A, 2020, 8,<br>2769-2776. | 10.3                          | 72        |
| 14 | Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping. Nano<br>Energy, 2020, 69, 104396.                                                                                   | 16.0                          | 76        |
| 15 | Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state<br>Li batteries. Nano Energy, 2020, 77, 105097.                                                              | 16.0                          | 41        |
| 16 | Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage<br>Materials, 2020, 33, 139-146.                                                                                | 18.0                          | 44        |
| 17 | Phase Evolution of a Prenucleator for Fast Li Nucleation in Allâ€Solidâ€State Lithium Batteries. Advanced<br>Energy Materials, 2020, 10, 2001191.                                                                  | 19.5                          | 17        |
| 18 | Origin of Superionic Li <sub>3</sub> Y <sub>1–<i>x</i></sub> In <sub><i>x</i></sub> Cl <sub>6</sub><br>Halide Solid Electrolytes with High Humidity Tolerance. Nano Letters, 2020, 20, 4384-4392.                  | 9.1                           | 94        |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Materials, 2020, 30, 238-249.                | 18.0 | 46        |
| 20 | Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy, 2020, 76, 105015.                             | 16.0 | 80        |
| 21 | Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li–O2<br>batteries. Nano Energy, 2020, 75, 105036.                                            | 16.0 | 45        |
| 22 | Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal<br>Batteries. ACS Energy Letters, 2020, 5, 1035-1043.                                           | 17.4 | 176       |
| 23 | A Versatile Snâ€Substituted Argyrodite Sulfide Electrolyte for Allâ€Solidâ€State Li Metal Batteries.<br>Advanced Energy Materials, 2020, 10, 1903422.                                          | 19.5 | 183       |
| 24 | Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by<br>Scanning Transmission X-ray Microscopy. Chemistry of Materials, 2020, 32, 1272-1280.              | 6.7  | 17        |
| 25 | Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solid‣tate Na Metal Batteries.<br>Advanced Functional Materials, 2020, 30, 2001118.                                     | 14.9 | 53        |
| 26 | Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy and Environmental Science, 2020, 13, 1429-1461.                                           | 30.8 | 366       |
| 27 | Trimetallic Pt–Pd–Ni octahedral nanocages with subnanometer thick-wall towards high oxygen<br>reduction reaction. Nano Energy, 2019, 64, 103890.                                               | 16.0 | 34        |
| 28 | Development of a Colloidal Gold Immunochromatographic Strip Assay for Rapid Detection of Bovine<br>Rotavirus. Viral Immunology, 2019, 32, 393-401.                                             | 1.3  | 11        |
| 29 | Air-stable Li <sub>3</sub> InCl <sub>6</sub> electrolyte with high voltage compatibility for all-solid-state batteries. Energy and Environmental Science, 2019, 12, 2665-2671.                 | 30.8 | 345       |
| 30 | Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life<br>Metallic Lithium Anode. Matter, 2019, 1, 1215-1231.                                         | 10.0 | 120       |
| 31 | <i>In situ</i> formation of highly controllable and stable Na <sub>3</sub> PS <sub>4</sub> as a protective layer for Na metal anode. Journal of Materials Chemistry A, 2019, 7, 4119-4125.     | 10.3 | 51        |
| 32 | Solidâ€State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfideâ€Based<br>Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900392. | 14.9 | 154       |
| 33 | Manipulating Interfacial Nanostructure to Achieve Highâ€Performance Allâ€Solidâ€State Lithiumâ€Ion<br>Batteries. Small Methods, 2019, 3, 1900261.                                              | 8.6  | 90        |
| 34 | Efficient Trapping and Catalytic Conversion of Polysulfides by VS <sub>4</sub> Nanosites for Li–S<br>Batteries. ACS Energy Letters, 2019, 4, 755-762.                                          | 17.4 | 185       |
| 35 | Designing a highly efficient polysulfide conversion catalyst with paramontroseite for<br>high-performance and long-life lithium-sulfur batteries. Nano Energy, 2019, 57, 230-240.              | 16.0 | 190       |
| 36 | Graphene Oxideâ€Template Controlled Cuboidâ€Shaped Highâ€Capacity VS <sub>4</sub> Nanoparticles as<br>Anode for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1801806.       | 14.9 | 125       |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector:<br>A New Approach to Enabling Stable Roomâ€Temperature Liâ€6 and Naâ€6 Batteries. Advanced Energy<br>Materials, 2018, 8, 1800624.                                | 19.5 | 64        |
| 38 | Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Materials, 2018, 15, 415-421.                                                                                                            | 18.0 | 40        |
| 39 | Highâ€Performance Oxygen Reduction Electrocatalyst Derived from Polydopamine and Cobalt<br>Supported on Carbon Nanotubes for Metal–Air Batteries. Advanced Functional Materials, 2017, 27,<br>1606034.                                                               | 14.9 | 121       |
| 40 | Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles. Nano Letters, 2017, 17, 4137-4142.                                                                                                                                                | 9.1  | 128       |
| 41 | All flexible electrospun papers based self-charging power system. Nano Energy, 2017, 38, 210-217.                                                                                                                                                                    | 16.0 | 97        |
| 42 | A hierarchical α-MoC <sub>1â^'x</sub> hybrid nanostructure for lithium-ion storage. Journal of<br>Materials Chemistry A, 2017, 5, 8125-8132.                                                                                                                         | 10.3 | 34        |
| 43 | Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction. CheM, 2017, 3, 652-664.                                                                                                                                                     | 11.7 | 406       |
| 44 | Influence of crystal phase on TiO <sub>2</sub> nanowire anodes in sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 20005-20013.                                                                                                                      | 10.3 | 32        |
| 45 | Hierarchical VS <sub>2</sub> Nanosheet Assemblies: A Universal Host Material for the Reversible<br>Storage of Alkali Metal Ions. Advanced Materials, 2017, 29, 1702061.                                                                                              | 21.0 | 320       |
| 46 | Promoting Effect of Ni(OH) <sub>2</sub> on Palladium Nanocrystals Leads to Greatly Improved<br>Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Advanced Materials,<br>2017, 29, 1703057.                                           | 21.0 | 251       |
| 47 | Amorphous MoS <sub>3</sub> as the sulfur-equivalent cathode material for room-temperature Li–S<br>and Na–S batteries. Proceedings of the National Academy of Sciences of the United States of America,<br>2017, 114, 13091-13096.                                    | 7.1  | 170       |
| 48 | Engineering SnS <sub>2</sub> nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage. Journal of Materials Chemistry A, 2017, 5, 25618-25624.                                                                                               | 10.3 | 79        |
| 49 | Amorphous MoS <sub>3</sub> Infiltrated with Carbon Nanotubes as an Advanced Anode Material of<br>Sodiumâ€ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Advanced Energy<br>Materials, 2017, 7, 1601602.                                     | 19.5 | 164       |
| 50 | MicroRNA-92b inhibits epithelial-mesenchymal transition-induced migration and invasion by targeting Smad3 in nasopharyngeal cancer. Oncotarget, 2017, 8, 91603-91613.                                                                                                | 1.8  | 22        |
| 51 | Zinc-Air Batteries: Metallic Cobalt Nanoparticles Encapsulated in Nitrogen-Enriched Graphene Shells:<br>Its Bifunctional Electrocatalysis and Application in Zinc-Air Batteries (Adv. Funct. Mater. 24/2016).<br>Advanced Functional Materials, 2016, 26, 4234-4234. | 14.9 | 4         |
| 52 | Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Research, 2016, 9, 3162-3170.                                                                                                 | 10.4 | 65        |
| 53 | Mo <sub>2</sub> C Nanoparticles Dispersed on Hierarchical Carbon Microflowers for Efficient<br>Electrocatalytic Hydrogen Evolution. ACS Nano, 2016, 10, 11337-11343.                                                                                                 | 14.6 | 483       |
| 54 | Metallic Cobalt Nanoparticles Encapsulated in Nitrogenâ€Enriched Graphene Shells: Its Bifunctional<br>Electrocatalysis and Application in Zinc–Air Batteries. Advanced Functional Materials, 2016, 26,<br>4397-4404.                                                 | 14.9 | 350       |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | CuWO <sub>4</sub> Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for<br>Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 9211-9217.                            | 8.0  | 81        |
| 56 | Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Research, 2016, 9, 1497-1506.                                                    | 10.4 | 112       |
| 57 | TiS 2 nanoplates: A high-rate and stable electrode material for sodium ion batteries. Nano Energy, 2016, 20, 168-175.                                                                                                  | 16.0 | 137       |
| 58 | Iron-based sodium-ion full batteries. Journal of Materials Chemistry A, 2016, 4, 1754-1761.                                                                                                                            | 10.3 | 50        |
| 59 | Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for<br>electrocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 16348-16353.                          | 10.3 | 209       |
| 60 | Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte. Nano Energy, 2015, 15, 654-661.                                          | 16.0 | 63        |
| 61 | Nanostructured CuP <sub>2</sub> /C composites as high-performance anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 21754-21759.                                                    | 10.3 | 113       |
| 62 | Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.                                                        | 12.8 | 466       |
| 63 | Cobalt Hexacyanoferrate Nanoparticles as a High-Rate and Ultra-Stable Supercapacitor Electrode<br>Material. ACS Applied Materials & Interfaces, 2014, 6, 11007-11012.                                                  | 8.0  | 171       |
| 64 | Synthesis of a fully capped mesoporous silica and its hybrids with extremely low dielectric constant and loss. Microporous and Mesoporous Materials, 2013, 176, 199-208.                                               | 4.4  | 11        |
| 65 | Thermally Conductive Aluminum Nitride–Multiwalled Carbon Nanotube/Cyanate Ester Composites<br>with High Flame Retardancy and Low Dielectric Loss. Industrial & Engineering Chemistry Research,<br>2013, 52, 3342-3353. | 3.7  | 51        |