

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8467376/publications.pdf Version: 2024-02-01

KE DU

#	Article	IF	CITATIONS
1	Gold Nanoparticleâ€Labeled CRISPRâ€Cas13a Assay for the Sensitive Solidâ€State Nanopore Molecular Counting. Advanced Materials Technologies, 2022, 7, .	5.8	12
2	Single <i>Chlamydomonas reinhardtii</i> cell separation from bacterial cells and autoâ€fluorescence tracking with a nanosieve device. Electrophoresis, 2021, 42, 95-102.	2.4	7
3	Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sensors, 2021, 6, 2497-2522.	7.8	37
4	Experimental and theoretical study on the microparticle trapping and release in a deformable nano-sieve channel. Nanotechnology, 2020, 31, 05LT01.	2.6	10
5	Photoresist Films: Freestanding Photoresist Film: A Versatile Template for Threeâ€Dimensional Micro― and Nanofabrication (Adv. Funct. Mater. 42/2020). Advanced Functional Materials, 2020, 30, 2070277.	14.9	1
6	Freestanding Photoresist Film: A Versatile Template for Threeâ€Dimensional Micro―and Nanofabrication. Advanced Functional Materials, 2020, 30, 2004129.	14.9	2
7	Integrated Micropillar Polydimethylsiloxane Accurate CRISPR Detection System for Viral DNA Sensing. ACS Omega, 2020, 5, 27433-27441.	3.5	28
8	High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosensors and Bioelectronics, 2020, 154, 112068.	10.1	163
9	Perspective of Molecular Diagnosis in Healthcare: From Barcode to Pattern Recognition. Diagnostics, 2019, 9, 75.	2.6	2
10	Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors, 2019, 4, 1048-1054.	7.8	215
11	Self-formation of polymer nanostructures in plasma etching: mechanisms and applications. Journal of Micromechanics and Microengineering, 2018, 28, 014006.	2.6	14
12	Superhydrophobic waveguide: Liquid-core air-cladding waveguide platform for optofluidics. Applied Physics Letters, 2018, 113, .	3.3	13
13	Manipulation of the Superhydrophobicity of Plasma-Etched Polymer Nanostructures. Micromachines, 2018, 9, 304.	2.9	19
14	Nanotexturing of Conjugated Polymers via One-Step Maskless Oxygen Plasma Etching for Enhanced Tunable Wettability. Langmuir, 2017, 33, 6885-6894.	3.5	26
15	Microfluidic System for Detection of Viral RNA in Blood Using a Barcode Fluorescence Reporter and a Photocleavable Capture Probe. Analytical Chemistry, 2017, 89, 12433-12440.	6.5	41
16	Sub-10 nm patterning with DNA nanostructures: a short perspective. Nanotechnology, 2017, 28, 442501.	2.6	14
17	Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography. Nanotechnology, 2017, 28, 465303.	2.6	9
18	Stencil Lithography for Scalable Micro- and Nanomanufacturing. Micromachines, 2017, 8, 131.	2.9	43

Ke Du

#	Article	IF	CITATIONS
19	Large-Scale Fabrication of Porous Gold Nanowires via Laser Interference Lithography and Dealloying of Gold–Silver Nano-Alloys. Micromachines, 2017, 8, 168.	2.9	18
20	Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions. Small, 2016, 12, 2885-2892.	10.0	12
21	Galvanic Replacement Reaction: A Route to Highly Ordered Bimetallic Nanotubes. Journal of Physical Chemistry C, 2016, 120, 17652-17659.	3.1	52
22	Planar Arrays of Nanoporous Gold Nanowires: When Electrochemical Dealloying Meets Nanopatterning. ACS Applied Materials & Interfaces, 2016, 8, 6611-6620.	8.0	49
23	The Kirkendall Effect in Binary Alloys: Trapping Gold in Copper Oxide Nanoshells. Chemistry of Materials, 2015, 27, 6374-6384.	6.7	21
24	Transfer patterning of large-area graphene nanomesh via holographic lithography and plasma etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	28
25	Fabrication of polymer nanowires via maskless O ₂ plasma etching. Nanotechnology, 2014, 25, 165301.	2.6	26
26	Hollow Nanostructures: Highly Ordered Hollow Oxide Nanostructures: The Kirkendall Effect at the Nanoscale (Small 17/2013). Small, 2013, 9, 2837-2837.	10.0	1
27	Fabrication of highly ordered hollow oxide nanostructures based on nanoscale Kirkendall effect and ostwald ripening. , 2013, , .		0
28	Simple Holographic Patterning for Highâ€Aspectâ€Ratio Threeâ€Dimensional Nanostructures with Large Coverage Area. Advanced Functional Materials, 2013, 23, 608-618.	14.9	55
29	Fabrication of hierarchical nanostructures using free-standing trilayer membrane. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 06FF04.	1.2	11
30	Dual applications of free-standing holographic nanopatterns for lift-off and stencil lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	18
31	3-D nanofabrication using nanostructured photoresist film as free-standing appliqué. , 2012, , .		4
32	From nanocone to nanodisc: Structural transformation of gold nanoarrays via simple mechanical stresses. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 06FF10.	1.2	9
33	Wafer-Scale Pattern Transfer of Metal Nanostructures on Polydimethylsiloxane (PDMS) Substrates via Holographic Nanopatterns. ACS Applied Materials & Interfaces, 2012, 4, 5505-5514.	8.0	35
34	Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnology, 2011, 22, 285306.	2.6	43