Xin Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/8467280/xin-wang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31,165 89 175 230 h-index g-index citations papers 35,416 11.2 7.74 237 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
230	Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. <i>ACS Catalysis</i> , 2012 , 2, 781-794	13.1	2727
229	A metalBrganic framework-derived bifunctional oxygen electrocatalyst. <i>Nature Energy</i> , 2016 , 1,	62.3	1622
228	Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. <i>Nature Chemistry</i> , 2012 , 4, 310-6	17.6	1549
227	Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. <i>Energy and Environmental Science</i> , 2014 , 7, 2624-2629	35.4	986
226	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17587-17603	13	740
225	Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes. <i>Nano Letters</i> , 2004 , 4, 345-348	11.5	682
224	Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2014 , 4, 1693-1705	13.1	678
223	A review on fundamentals for designing oxygen evolution electrocatalysts. <i>Chemical Society Reviews</i> , 2020 , 49, 2196-2214	58.5	591
222	A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution. <i>Advanced Energy Materials</i> , 2015 , 5, 1500985	21.8	567
221	Chemical and structural origin of lattice oxygen oxidation in Coll oxyhydroxide oxygen evolution electrocatalysts. <i>Nature Energy</i> , 2019 , 4, 329-338	62.3	542
220	One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13934-7	16.4	531
219	Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. <i>Journal of Power Sources</i> , 2006 , 158, 154-159	8.9	526
218	Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. <i>Energy and Environmental Science</i> , 2014 , 7, 3302-330	6 ^{35.4}	436
217	Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. <i>Advanced Energy Materials</i> , 2017 , 7, 1700544	21.8	407
216	Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9480-5	16.4	377
215	Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. <i>Nanoscale</i> , 2013 , 5, 7768-71	7.7	376
214	Recent developments in electrode materials for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9353-9378	13	357

(2015-2015)

213	One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3797-801	16.4	348	
212	Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 12794-8	9.5	347	
211	A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. <i>Catalysis Today</i> , 2014 , 233, 169-180	5.3	340	
210	General Formation of M-MoS3 (M = Co, Ni) Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 92-7	24	328	
209	Formation of Ni-Fe Mixed Diselenide Nanocages as a Superior Oxygen Evolution Electrocatalyst. <i>Advanced Materials</i> , 2017 , 29, 1703870	24	327	
208	Clay-Inspired MXene-Based Electrochemical Devices and Photo-Electrocatalyst: State-of-the-Art Progresses and Challenges. <i>Advanced Materials</i> , 2018 , 30, e1704561	24	301	
207	Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. <i>Applied Catalysis B: Environmental</i> , 2009 , 91, 507-515	21.8	284	
206	Recent progress on graphene-based hybrid electrocatalysts. <i>Materials Horizons</i> , 2014 , 1, 379-399	14.4	277	
205	Novel Molybdenum Carbide Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2015 , 25, 1520-7	15256	275	
204	In Situ Grown Epitaxial Heterojunction Exhibits High-Performance Electrocatalytic Water Splitting. <i>Advanced Materials</i> , 2018 , 30, e1705516	24	273	
203	Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. <i>Advanced Energy Materials</i> , 2018 , 8, 1801909	21.8	263	
202	Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 12684-91	9.5	26 0	
201	Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell. <i>Chemistry of Materials</i> , 2006 , 18, 5669-5675	9.6	258	
200	Strongly coupled NiCo(2)O(4)-rGO hybrid nanosheets as a methanol-tolerant electrocatalyst for the oxygen reduction reaction. <i>Advanced Materials</i> , 2014 , 26, 2408-12	24	257	
199	Lithium-doped conjugated microporous polymers for reversible hydrogen storage. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3330-3	16.4	245	
198	Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting. <i>ACS Nano</i> , 2017 , 11, 11031-11040	16.7	239	
197	Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. <i>Nano Energy</i> , 2017 , 40, 308-316	17.1	235	
196	Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 131-135	13	229	

195	Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18935-18945	3.8	227
194	An Efficient and Earth-Abundant Oxygen-Evolving Electrocatalyst Based on Amorphous Metal Borides. <i>Advanced Energy Materials</i> , 2018 , 8, 1701475	21.8	220
193	Catalysis mechanisms of CO2 and CO methanation. <i>Catalysis Science and Technology</i> , 2016 , 6, 4048-4058	85.5	218
192	Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. <i>Chemical Communications</i> , 2008 , 353-5	5.8	216
191	Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. <i>Chemistry - A European Journal</i> , 2017 , 23, 10947-10961	4.8	211
190	Enlarged Co?O Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction. <i>Advanced Materials</i> , 2018 , 30, e1802912	24	205
189	Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. <i>Energy and Environmental Science</i> , 2016 , 9, 1687-1695	35.4	204
188	Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7213-6	16.4	202
187	Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion membrane. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 562, 73-80	4.1	201
186	A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting. <i>Chemistry - A European Journal</i> , 2015 , 21, 18062-7	4.8	198
185	Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. <i>Nano Energy</i> , 2016 , 30, 368-378	17.1	196
184	PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. <i>Langmuir</i> , 2008 , 24, 10505-12	4	194
183	Efficient Electrochemical Reduction of CO to HCOOH over Sub-2 nm SnO Quantum Wires with Exposed Grain Boundaries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8499-8503	16.4	193
182	Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5286		189
181	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. <i>Energy and Environmental Science</i> , 2016 , 9, 2563-2570	35.4	183
180	Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12337-40	16.4	182
179	Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. <i>Langmuir</i> , 2005 , 21, 9386-9	4	182
178	General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8643-7	16.4	179

(2008-2019)

177	Rational Design of Transition Metal-Based Materials for Highly Efficient Electrocatalysis. <i>Small Methods</i> , 2019 , 3, 1800211	12.8	166	
176	Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. <i>Energy and Environmental Science</i> , 2020 , 13, 374-403	35.4	163	
175	Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. <i>Applied Catalysis B: Environmental</i> , 2014 , 154-155, 232-	-237 ⁸	162	
174	Bi O Nanosheets Grown on Multi-Channel Carbon Matrix to Catalyze Efficient CO Electroreduction to HCOOH. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13828-13833	16.4	154	
173	Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide. <i>Chemical Communications</i> , 2013 , 49, 4884-6	5.8	153	
172	Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell. <i>Journal of Membrane Science</i> , 2002 , 210, 147-153	9.6	151	
171	Synthesis and Characterization of Surfactant-Stabilized Pt/C Nanocatalysts for Fuel Cell Applications. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 11057-11064	3.4	151	
170	Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis. <i>Matter</i> , 2019 , 1, 149	94 <u>-</u> 1. 5 1	8151	
169	Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor. <i>Journal of Power Sources</i> , 2012 , 201, 382-386	8.9	149	
168	Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. <i>Electrochimica Acta</i> , 2011 , 56, 3338-3344	6.7	148	
167	Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15353-8	3.4	146	
166	Electrochemical Impedance Studies of Methanol Electro-oxidation on Pt/C Thin Film Electrode. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A615	3.9	144	
165	Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. <i>ACS Energy Letters</i> , 2017 , 2, 2035-2043	20.1	139	
164	Construction of Efficient 3D Gas Evolution Electrocatalyst for Hydrogen Evolution: Porous FeP Nanowire Arrays on Graphene Sheets. <i>Advanced Science</i> , 2015 , 2, 1500120	13.6	139	
163	PtshellAucore/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions. <i>Electrochemistry Communications</i> , 2008 , 10, 12-15	5.1	134	
162	In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. <i>Science Advances</i> , 2018 , 4, eaap7970	14.3	131	
161	Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 68	83-91	129	
160	Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation. <i>Nanotechnology</i> , 2008 , 19, 265601	3.4	126	

159	Novel palladium (PdPb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media. <i>Journal of Power Sources</i> , 2010 , 195, 2619-2622	8.9	115
158	CNT-Based Electrodes with High Efficiency for PEMFCs. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, A42		110
157	Boosting Electrochemical CO Reduction on Metal-Organic Frameworks via Ligand Doping. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4041-4045	16.4	108
156	Sandwich-structured TiO2Ptgraphene ternary hybrid electrocatalysts with high efficiency and stability. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16499		107
155	Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells. <i>Electrochimica Acta</i> , 2002 , 47, 2981-2987	6.7	107
154	Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst. <i>Nanotechnology</i> , 2009 , 20, 025605	3.4	105
153	Deposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cells. <i>Nanotechnology</i> , 2005 , 16, S395-400	3.4	102
152	Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites. Journal of the American Chemical Society, 2017 , 139, 1878-1884	16.4	101
151	Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells. <i>Electrochimica Acta</i> , 2011 , 56, 1563-1569	6.7	100
150	Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. <i>Electrochimica Acta</i> , 2009 , 54, 4916-4924	6.7	98
149	The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement. <i>Electrochimica Acta</i> , 2009 , 54, 3092-3097	6.7	97
148	Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. <i>Electrochemistry Communications</i> , 2008 , 10, 961-964	5.1	97
147	Graphene/NiO nanowires: controllable one-pot synthesis and enhanced pseudocapacitive behavior. <i>ACS Applied Materials & Distributed & Distributed & Distributed & Distributed </i>	9.5	94
146	Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. <i>Electrochemistry Communications</i> , 2009 , 11, 313-317	5.1	94
145	Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15228	13	93
144	Electrocatalysis of Pdto supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media. <i>Applied Catalysis B: Environmental</i> , 2010 , 99, 229-234	21.8	91
143	Hydrogen storage in a Ni B nanoalloy-doped three-dimensional graphene material. <i>Energy and Environmental Science</i> , 2011 , 4, 195-200	35.4	90
142	Ethylene Selectivity in Electrocatalytic CO Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12760-12766	16.4	89

(2012-2004)

141	Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4122-3	16.4	86	
140	Nano-RuO -Decorated Holey Graphene Composite Fibers for Micro-Supercapacitors with Ultrahigh Energy Density. <i>Small</i> , 2018 , 14, e1800582	11	85	
139	Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13532-13539	16.4	84	
138	A Hierarchical MoP Nanoflake Array Supported on Ni Foam: A Bifunctional Electrocatalyst for Overall Water Splitting. <i>Small Methods</i> , 2018 , 2, 1700369	12.8	78	
137	Carbohydrate functionalized carbon nanotubes and their applications. <i>Chemical Society Reviews</i> , 2010 , 39, 2925-34	58.5	78	
136	Recent Methods for the Synthesis of Noble-Metal-Free Hydrogen-Evolution Electrocatalysts: From Nanoscale to Sub-nanoscale. <i>Small Methods</i> , 2017 , 1, 1700118	12.8	76	
135	Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. <i>Electrochemistry Communications</i> , 2010 , 12, 1646-1649	5.1	76	
134	Strategies on the Design of Nitrogen-Doped Graphene. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 119-25	6.4	73	
133	Highly Efficient Oxygen Reduction Reaction Activity of N-Doped Carbon@obalt Boride Heterointerfaces. <i>Advanced Energy Materials</i> , 2021 , 11, 2100157	21.8	72	
132	Free-standing vertically-aligned nitrogen-doped carbon nanotube arrays/graphene as air-breathing electrodes for rechargeable zinclir batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2488-2495	13	71	
131	Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in ENaLuF4 microcrystals under 980 nm excitation. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2485	7.1	67	
130	Electrochemical hydrogen storage properties of ball-milled multi-wall carbon nanotubes. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 1437-1443	6.7	67	
129	Assembling pore-rich FeP nanorods on the CNT backbone as an advanced electrocatalyst for oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13005-13010	13	67	
128	Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co0.55Mn0.45)0.99O3-Ihanorod/graphene hybrid in alkaline media. <i>Nanoscale</i> , 2015 , 7, 9046-54	7.7	64	
127	Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure. <i>Journal of Colloid and Interface Science</i> , 2009 , 339, 69-77	9.3	63	
126	Ethanol electro-oxidation activity of Nb-doped-TiO2 supported PdAg catalysts in alkaline media. <i>Applied Catalysis B: Environmental</i> , 2012 , 113-114, 261-270	21.8	62	
125	Methane reforming with carbon dioxide over a Ni/ZiO2BiO2 catalyst: Influence of pretreatment gas atmospheres. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 10135-10144	6.7	60	
124	Formation of Pt-TiO2-rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 473-6	3.6	59	

123	Pd Nanoparticles on Carbon Nitride Traphene for the Selective Electro-Oxidation of Glycerol in Alkaline Solution. <i>ACS Catalysis</i> , 2015 , 5, 3174-3180	13.1	58
122	Highly Efficient and Durable Pd Hydride Nanocubes Embedded in 2D Amorphous NiB Nanosheets for Oxygen Reduction Reaction. <i>Advanced Energy Materials</i> , 2017 , 7, 1700919	21.8	58
121	Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide. <i>Chemical Communications</i> , 2011 , 47, 7473-5	5.8	58
120	Selective Electrochemical Reduction of CO to Ethylene on Nanopores-Modified Copper Electrodes in Aqueous Solution. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 32782-32789	9.5	57
119	A Water-Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO2 Reduction on Graphene-Based Electrodes. <i>Advanced Energy Materials</i> , 2019 , 9, 1803151	21.8	57
118	Tailoring of Metal Boride Morphology via Anion for Efficient Water Oxidation. <i>Advanced Energy Materials</i> , 2019 , 9, 1901503	21.8	54
117	Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells. <i>Journal of Power Sources</i> , 2001 , 96, 282-287	8.9	54
116	Highly active Pd and PdAu nanoparticles supported on functionalized graphene nanoplatelets for enhanced formic acid oxidation. <i>RSC Advances</i> , 2014 , 4, 4028-4033	3.7	53
115	Boosting Electrochemical CO2 Reduction on Metal Drganic Frameworks via Ligand Doping. <i>Angewandte Chemie</i> , 2019 , 131, 4081-4085	3.6	52
114	Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation. <i>Electrochemistry Communications</i> , 2007 , 9, 2473-2478	5.1	52
113	Ultrathin Amorphous Iron-Nickel Boride Nanosheets for Highly Efficient Electrocatalytic Oxygen Production. <i>Chemistry - A European Journal</i> , 2018 , 24, 18502-18511	4.8	52
112	Template-free pseudomorphic synthesis of tungsten carbide nanorods. <i>Small</i> , 2012 , 8, 3350-6	11	51
111	Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts. <i>Electrochemistry Communications</i> , 2008 , 10, 1101-1104	5.1	51
110	3D ordered porous MoC (x = 1 or 2) for advanced hydrogen evolution and Li storage. <i>Nanoscale</i> , 2017 , 9, 7260-7267	7.7	48
109	Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells. <i>Journal of Power Sources</i> , 2010 , 195, 1024-1030	8.9	48
108	Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells. <i>Electrochemistry Communications</i> , 2012 , 19, 13-16	5.1	47
107	Model interpretation of electrochemical impedance spectroscopy and polarization behavior of H2/CO mixture oxidation in polymer electrolyte fuel cells. <i>Electrochimica Acta</i> , 2001 , 46, 4397-4405	6.7	47
106	Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals. <i>Journal of Membrane Science</i> , 2008 , 320, 86-92	9.6	45

(2011-2013)

-	105	Pd catalyst supported on a chitosan-functionalized large-area 3D reduced graphene oxide for formic acid electrooxidation reaction. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6839	13	44	
-	104	Synthesis and characterization of CocorePtshell electrocatalyst prepared by spontaneous replacement reaction for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2010 , 56, 1000-1007	6.7	44	
-	103	Isolated FeN Sites for Efficient Electrocatalytic CO Reduction. <i>Advanced Science</i> , 2020 , 7, 2001545	13.6	44	
	102	Shape-controlled synthesis of octahedral ENaYF4 and its rare earth doped submicrometer particles in acetic acid. <i>Nano Research</i> , 2009 , 2, 565-574	10	43	
-	101	Facile Synthesis of Amorphous Ternary Metal Borides-Reduced Graphene Oxide Hybrid with Superior Oxygen Evolution Activity. <i>ACS Applied Materials & English </i>	9.5	43	
	100	One-pot synthesis of platinum nanocubes on reduced graphene oxide with enhanced electrocatalytic activity. <i>Small</i> , 2014 , 10, 2336-9	11	41	
Ç	99	Water-soluble polymer exfoliated graphene: as catalyst support and sensor. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 5606-13	3.4	41	
٥	98	Lithiation/Delithiation Synthesis of Few Layer Silicene Nanosheets for Rechargeable Li-O Batteries. <i>Advanced Materials</i> , 2018 , 30, e1705523	24	40	
٥	97	Selective synthesis of hexagonal Ag nanoplates in a solution-phase chemical reduction process. <i>Nano Research</i> , 2010 , 3, 843-851	10	40	
٥	96	Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells. <i>Nanotechnology</i> , 2008 , 19, 455602	3.4	40	
٥	95	Electrochemical hydrogen storage of ball-milled MmMg12 alloyNi composites. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 3550-3554	6.7	39	
٥	94	Methanol Resistant Cathodic Catalyst for Direct Methanol Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A2183	3.9	39	
٥	93	Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19162-1910	6 ^{16.4}	38	
٥	92	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7418-7425	16.4	38	
٥	91	Assessment of CO-tolerance for different Pt-alloy anode catalysts in a polymer electrolyte fuel cell using ac impedance spectroscopy. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 528, 145-152	4.1	37	
٥	90	A Planar, Conjugated N -Macrocyclic Cobalt Complex for Heterogeneous Electrocatalytic CO Reduction with High Activity. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17104-17109	16.4	36	
(89	Hierarchically structured Pt/CNT@TiO2 nanocatalysts with ultrahigh stability for low-temperature fuel cells. <i>RSC Advances</i> , 2012 , 2, 792-796	3.7	36	
{	88	Tb promoted Pd/C catalysts for the electrooxidation of ethanol in alkaline media. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 9645-9652	6.7	36	

87	Aryl/hetero-arylethyne bridged dyes: the effect of planar Ebridge on the performance of dye-sensitized solar cells. <i>New Journal of Chemistry</i> , 2011 , 35, 127-136	3.6	36
86	Nickel-complexes with a mixed-donor ligand for photocatalytic hydrogen evolution from aqueous solutions under visible light. <i>RSC Advances</i> , 2012 , 2, 8293	3.7	35
85	Effect of Pd-impregnation on performance, sulfur poisoning and tolerance of Ni/GDC anode of solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 10299-10310	6.7	35
84	Mesoporous ITO/NiO with a core/shell structure for supercapacitors. <i>Nano Energy</i> , 2013 , 2, 1303-1313	17.1	35
83	Uniform core-shell titanium phosphate nanospheres with orderly open nanopores: a highly active Bristed acid catalyst. <i>Chemical Communications</i> , 2010 , 46, 1670-2	5.8	35
82	An Earth-Abundant Tungsten Mickel Alloy Electrocatalyst for Superior Hydrogen Evolution. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1228-1235	5.6	34
81	Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation 2019 , 1, 77-84		34
80	Novel tungsten carbide nanorods: an intrinsic peroxidase mimetic with high activity and stability in aqueous and organic solvents. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 521-7	11.8	34
79	Nitrified coke wastewater sludge flocs: an attractive precursor for N,S dual-doped graphene-like carbon with ultrahigh capacitance and oxygen reduction performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2012-2020	13	33
78	Reinforced and self-humidifying composite membrane for fuel cell applications. <i>Journal of Membrane Science</i> , 2009 , 330, 357-362	9.6	33
77	Pt supported on highly graphitized lace-like carbon for methanol electrooxidation. <i>Carbon</i> , 2008 , 46, 531-536	10.4	33
76	Compressed hydrogen gas-induced synthesis of Au B t core S hell nanoparticle chains towards high-performance catalysts for Li D 2 batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10676-10681	13	32
75	Synthesis of Pt and Pd nanosheaths on multi-walled carbon nanotubes as potential electrocatalysts of low temperature fuel cells. <i>Electrochimica Acta</i> , 2010 , 55, 7652-7658	6.7	32
74	An investigation of the origin of the electrochemical hydrogen storage capacities of the ball-milled CoBi composites. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 1669-1673	6.7	32
73	Electrochemical hydrogen storage properties of the ball-milled PrMg12 \square Nix + 150 wt% Ni (x = 1 and 2) composites. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 5066-5072	6.7	32
72	Pore-filling membrane for direct methanol fuel cells based on sulfonated poly(styrene-ran-ethylene) and porous polyimide matrix. <i>Journal of Membrane Science</i> , 2009 , 342, 208-2	2146	28
71	Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. <i>Nature Communications</i> , 2021 , 12, 3992	17.4	27
70	Hydrothermal assembly of micro-nano-integrated core-sheath carbon fibers for high-performance all-carbon micro-supercapacitors. <i>Energy Storage Materials</i> , 2017 , 9, 221-228	19.4	26

69	Bi2O3 Nanosheets Grown on Multi-Channel Carbon Matrix to Catalyze Efficient CO2 Electroreduction to HCOOH. <i>Angewandte Chemie</i> , 2019 , 131, 13966-13971	3.6	25
68	Excellent Durability of Substoichiometric Titanium Oxide As a Catalyst Support for Pd in Alkaline Direct Ethanol Fuel Cells. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 9966-9972	3.9	25
67	CeO[sub 2] Promoted Electro-Oxidation of Formic Acid on Pdft Nano-Electrocatalysts. Electrochemical and Solid-State Letters, 2009 , 12, B73		25
66	Rational Design of Metal@rganic Frameworks towards Efficient Electrocatalysis 2020 , 2, 1251-1267		25
65	A 3D mesoporous polysulfone-carbon nanotube anode for enhanced bioelectricity output in microbial fuel cells. <i>Chemical Communications</i> , 2013 , 49, 10754-6	5.8	23
64	Improving mediated electron transport in anodic bioelectrocatalysis. <i>Chemical Communications</i> , 2015 , 51, 12170-3	5.8	23
63	Partially oxidized titanium carbonitride as a non-noble catalyst for oxygen reduction reactions. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 15135-15139	6.7	23
62	Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6490		23
61	Electrochemical hydrogen storage properties of ball-milled NdMg12 alloy with Ni powders. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 1023-1027	6.7	23
60	A DFT Study on the Adsorption of Formic Acid and Its Oxidized Intermediates on (100) Facets of Pt, Au, Monolayer and Decorated Pt@Au Surfaces. <i>Catalysis Letters</i> , 2011 , 141, 1872-1882	2.8	22
59	Fabrication of a mesoporous Co(OH)2/ITO nanowire composite electrode and its application in supercapacitors. <i>RSC Advances</i> , 2012 , 2, 10512	3.7	21
58	Ultrafast hydrothermal assembly of nanocarbon microfibers in near-critical water for 3D microsupercapacitors. <i>Carbon</i> , 2018 , 132, 698-708	10.4	20
57	CO Adsorption Behavior on Decorated [email[protected] Nanoelectrocatalysts: A Combined Experimental and DFT Theoretical Calculation Study. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3851-38	3 36 8	20
56	A CO2-responsive surface with an amidine-terminated self-assembled monolayer for stimuli-induced selective adsorption. <i>Chemical Communications</i> , 2014 , 50, 4003-6	5.8	19
55	High-yield synthesis of ultrathin silica-based nanosheets and their superior catalytic activity in H2O2 decomposition. <i>Chemical Communications</i> , 2011 , 47, 6135-7	5.8	19
54	Kinetics investigation of H2/CO electro-oxidation on carbon supported Pt and its alloys using impedance based models. <i>Journal of Electroanalytical Chemistry</i> , 2003 , 556, 117-126	4.1	19
53	Octahedral PtNi nanoparticles with controlled surface structure and composition for oxygen reduction reaction. <i>Science China Materials</i> , 2017 , 60, 1109-1120	7.1	18
52	Copper-Modified Gold Nanoparticles as Highly Selective Catalysts for Glycerol Electro-Oxidation in Alkaline Solution. <i>ChemCatChem</i> , 2016 , 8, 3272-3278	5.2	18

51	Carbon nanotube free-standing membrane as gas diffusion layer in hydrogen fuel cells. <i>Micro and Nano Letters</i> , 2006 , 1, 62	0.9	18
50	Recycling and regeneration of used perfluorosulfonic membranes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 2002 , 32, 1337-1340	2.6	18
49	Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 13666-13673	3.6	17
48	A microporous Mg2+ MOF with cation exchange properties in a single-crystal-to-single-crystal fashion. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 530-536	6.8	16
47	Recyclable sulfonated amorphous carbon catalyzed friedel-crafts alkylation of indoles with alpha, beta-unsaturated carbonyl compounds in water. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 778-82	4.5	16
46	Ethanol electrooxidation on Pt/C catalysts promoted with praseodymium oxide nanorods. <i>Dalton Transactions</i> , 2009 , 7606-9	4.3	15
45	Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene. <i>Applied Catalysis B: Environmental</i> , 2015 , 166-167, 25-31	21.8	14
44	Enzymatic-reaction induced production of polydopamine nanoparticles for sensitive and visual sensing of urea. <i>Analyst, The</i> , 2015 , 140, 449-55	5	14
43	Sr1\(\text{ICaxMoO3}\(\text{G}\)d0.2Ce0.8O1.9 as the anode in solid oxide fuel cells: Effects of Mo precipitation. Journal of Alloys and Compounds, 2014 , 587, 326-331	5.7	14
42	H2 and CH4 oxidation on Gd0.2Ce0.8O1.9 infiltrated SrMoO3IJttria-stabilized zirconia anode for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 18349-18356	6.7	14
41	Fabrication of the porous polyimide film as a matrix of the composite membrane of the direct methanol fuel cell. <i>Separation and Purification Technology</i> , 2009 , 67, 208-212	8.3	14
40	Hierarchical N-Rich Carbon Sponge with Excellent Cycling Performance for Lithium-Sulfur Battery at High Rates. <i>Chemistry - A European Journal</i> , 2018 , 24, 5860-5867	4.8	13
39	Hydrothermal preparation of carbon nanosheets and their supercapacitive behavior. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11458		13
38	Ag containing porous Au structures as highly selective catalysts for glycolate and formate. <i>Catalysis Science and Technology</i> , 2017 , 7, 874-881	5.5	12
37	Interface-facilitated hydrothermal synthesis of sub-micrometre graphitic carbon plates. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15197		12
36	Influence of preparation process on non-noble metal-based composite electrocatalysts for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2008 , 183, 604-608	8.9	12
35	Electrochemical properties of ball-milled LaMg12Ni composites containing carbon nanotubes. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 1444-1449	6.7	11
34	Preparation and Catalytic Activity of Carbon Nanotube-Supported Metalloporphyrin Electrocatalyst. <i>Chinese Journal of Catalysis</i> , 2008 , 29, 519-523	11.3	11

33	Structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion. <i>Science Advances</i> , 2021 , 7,	14.3	11
32	A Planar, Conjugated N4-Macrocyclic Cobalt Complex for Heterogeneous Electrocatalytic CO2 Reduction with High Activity. <i>Angewandte Chemie</i> , 2020 , 132, 17252-17257	3.6	10
31	Fe-based metallopolymer nanowall-based composites for Li-O2 battery cathode. <i>ACS Applied Materials & Discrete Action & </i>	9.5	9
30	Nanoporous platinum grown on nickel foam by facile plasma reduction with enhanced electro-catalytic performance. <i>Electrochemistry Communications</i> , 2012 , 18, 33-36	5.1	9
29	Co2MnO4 spinel-palladium co-infiltrated La0.7Ca0.3Cr0.5Mn0.5O3Lathodes for intermediate temperature solid oxide fuel cells. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 9708-9717	5.7	9
28	Enlarging the Econjugation of Cobalt Porphyrin for Highly Active and Selective CO Electroreduction. <i>ChemSusChem</i> , 2021 , 14, 2126-2132	8.3	9
27	Improving electron trans-inner membrane movements in microbial electrocatalysts. <i>Chemical Communications</i> , 2016 , 52, 6292-5	5.8	9
26	Facile Synthesis of 3 D Platinum Dendrites with a Clean Surface as Highly Stable Electrocatalysts. <i>ChemCatChem</i> , 2014 , 6, 1538-1542	5.2	8
25	CO2 reforming of dimethyl ether over Ni/FAl2O3 catalyst. Catalysis Communications, 2012, 17, 49-53	3.2	8
24	Electrochemical characteristics of the ball-milled LaMg10-xTixNi2LaMg10-xTixNi2 alloys with Ni powders (x=1x=1 and 2). <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 4180-4185	6.7	8
23	Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. <i>Angewandte Chemie</i> , 2020 , 132, 19324-19329	3.6	8
22	Investigation of Structural Evolution of SnO Nanosheets towards Electrocatalytic CO Reduction. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 1558-1561	4.5	7
21	Ce(5)Mg(41)-xNi nanocomposites for electrochemical hydrogen storage. <i>Dalton Transactions</i> , 2008 , 549	5 ₄ 5 ₅ 00	7
20	Electrodeposition of mesoporous bilayers of polyaniline supported Cu2O semiconductor films from Lyotropic Liquid Crystalline phase. <i>Chemical Engineering Science</i> , 2012 , 80, 452-459	4.4	6
19	One-step dual template synthesis of platinum on mesoporous carbon nanowires for electrocatalysts. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 2754-2759	6.7	5
18	Molecule Confined Isolated Metal Sites Enable the Electrocatalytic Synthesis of Hydrogen Peroxide. <i>Advanced Materials</i> , 2021 , e2104891	24	5
17	Augmentation of hydroxyl groups as electrocatalytic active sites in porous graphene. <i>Carbon</i> , 2019 , 154, 384-390	10.4	4
16	Synthesis of Mesoporous Polyaniline (PANI)-Se0.5Te0.5 Dual-Layer Film from Lyotropic Liquid Crystalline Template. <i>Industrial & Discourse Compared Chemistry Research</i> , 2013 , 52, 5072-5078	3.9	4

15	Synthesis of Hollow-Cone-Like Carbon and Its Application as Support Material for Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B377	3.9	4
14	Pd Nanoparticles Supported on PDDA-Functionalized Ti4O7 as an Effective Catalyst for Formic Acid Electrooxidation. <i>ECS Solid State Letters</i> , 2014 , 3, M37-M40		3
13	ManoreactorsPfor photocatalytic H2 evolution in oil-water biphase systems. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 14449-51	3.6	3
12	Density functional theory (DFT)-based modified embedded atom method potentials: Bridging the gap between nanoscale theoretical simulations and DFT calculations. <i>Science China Chemistry</i> , 2010 , 53, 411-418	7.9	3
11	Electrochemical Performances of the Ballmilled Pr[sub 5]Mg[sub 41] Alloy with Ni Powders as Anode Materials of NiMH Batteries. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A982	3.9	3
10	Recent advances in catalysisBelected papers from APCAT 4 (Singapore, 6B December 2006). <i>Catalysis Today</i> , 2008 , 131, 1	5.3	3
9	Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 2973-2979	2.3	2
8	Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders. <i>Materials Chemistry and Physics</i> , 2008 , 110, 234-238	4.4	2
7	Effects of Axial Functional Groups on Heterogeneous Molecular Catalysts for Electrocatalytic CO2 Reduction. <i>Small Structures</i> ,2100093	8.7	2
6	Effects of strain on PdZn(100) for methoxide decomposition: A DFT study. <i>Journal of Molecular Catalysis A</i> , 2014 , 393, 296-301		1
5	Development of PtRu Electrocatalysts on 1-Aminopyrene Functionalized MWCNTs for Direct Methanol Fuel Cells. <i>ECS Transactions</i> , 2009 , 16, 467-472	1	О
4	Boosting microbial electrocatalysis via localized high electron shuttles concentration by monolithic electrode based on nanostructured nitrogen-doped carbon microtubes. <i>Journal of Power Sources</i> , 2021 , 514, 230557	8.9	O
3	Heterogeneous carbon dioxide reduction reaction by cobalt complexes of 4?,4???-disubstituted derivatives of quinquepyridine immobilized on carbon black. <i>Electrochimica Acta</i> , 2021 , 380, 138224	6.7	О
2	Efficient Electrochemical Reduction of CO2 to HCOOH over Sub-2 nm SnO2 Quantum Wires with Exposed Grain Boundaries. <i>Angewandte Chemie</i> , 2019 , 131, 8587	3.6	
1	InnenrEktitelbild: Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction (Angew. Chem. 43/2020). <i>Angewandte Chemie</i> , 2020 , 132, 19527-19527	3.6	