Freddy Kleitz

List of Publications by Citations

Source: https://exaly.com/author-pdf/846705/freddy-kleitz-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 170
 10,868
 53
 101

 papers
 citations
 h-index
 g-index

 182
 11,811
 8
 6.51

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
170	Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. <i>Chemical Communications</i> , 2003 , 2136-7	5.8	1170
169	MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7601-10	16.4	635
168	Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano, 2009, 3, 3737-43	16.7	365
167	YolkBhell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. <i>Advanced Functional Materials</i> , 2012 , 22, 591-599	15.6	330
166	Hard Templating Pathways for the Synthesis of Nanostructured Porous Co3O4. <i>Chemistry of Materials</i> , 2007 , 19, 485-496	9.6	298
165	Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. <i>Chemical Communications</i> , 2003 , 1340-1	5.8	280
164	Large Cage Face-Centered-CubicFm3mMesoporous Silica: □Synthesis and Structure. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 14296-14300	3.4	275
163	Calcination behavior of different surfactant-templated mesostructured silica materials. <i>Microporous and Mesoporous Materials</i> , 2003 , 65, 1-29	5.3	251
162	Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1924-32	16.4	243
161	Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9992	13	241
160	Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. <i>ACS Nano</i> , 2012 , 6, 2104-17	16.7	227
159	Exchange anisotropy in nanocasted Co3O4 nanowires. <i>Nano Letters</i> , 2006 , 6, 2977-81	11.5	227
158	Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. <i>Biomaterials</i> , 2016 , 91, 90-127	15.6	199
157	Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6618-23	16.4	181
156	Probing Adsorption, Pore Condensation, and Hysteresis Behavior of Pure Fluids in Three-Dimensional Cubic Mesoporous KIT-6 Silica. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9344-9355	3.8	167
155	Cavitation in metastable liquid nitrogen confined to nanoscale pores. <i>Langmuir</i> , 2010 , 26, 10147-57	4	153
154	Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. <i>Chemical Communications</i> , 2011 , 47, 7797-9	5.8	152

(2011-2012)

153	Enzyme-responsive controlled release of covalently bound prodrug from functional mesoporous silica nanospheres. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12486-9	16.4	146
152	Phase domain of the cubic Im3m mesoporous silica in the EO106PO70EO106-butanol-H2O system. <i>Langmuir</i> , 2006 , 22, 440-5	4	130
151	Nanocast LaNiO3 Perovskites as Precursors for the Preparation of Coke-Resistant Dry Reforming Catalysts. <i>ACS Catalysis</i> , 2014 , 4, 3837-3846	13.1	129
150	On the nature of the Brfisted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution. <i>Langmuir</i> , 2007 , 23, 4315-23	4	129
149	Mesoporous Silica Fibers: Synthesis, Internal Structure, and Growth Kinetics. <i>Chemistry of Materials</i> , 2001 , 13, 3587-3595	9.6	129
148	Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential oxidation of CO at low temperature. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12032-5	16.4	126
147	Evaluation of mesoporous silica nanoparticles for oral drug delivery - current status and perspective of MSNs drug carriers. <i>Nanoscale</i> , 2017 , 9, 15252-15277	7.7	124
146	Role of MetalBupport Interactions, Particle Size, and MetalMetal Synergy in CuNi Nanocatalysts for H2 Generation. <i>ACS Catalysis</i> , 2015 , 5, 5505-5511	13.1	113
145	X-ray Structural Modeling and Gas Adsorption Analysis of Cagelike SBA-16 Silica Mesophases Prepared in a F127/Butanol/H2O System. <i>Chemistry of Materials</i> , 2006 , 18, 5070-5079	9.6	110
144	Large Pore Mesostructured Organosilica-Phosphonate Hybrids as Highly Efficient and Regenerable Sorbents for Uranium Sequestration. <i>Chemistry of Materials</i> , 2012 , 24, 4166-4176	9.6	106
143	Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. <i>Chemistry of Materials</i> , 2016 , 28, 4243-4258	9.6	106
142	Disulfide-Bridged Organosilica Frameworks: Designed, Synthesis, Redox-Triggered Biodegradation, and Nanobiomedical Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1707325	15.6	106
141	Functionalization of mesoporous materials for lanthanide and actinide extraction. <i>Dalton Transactions</i> , 2016 , 45, 14832-54	4.3	105
140	Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer-butanol-water system. <i>Chemical Communications</i> , 2004 , 1536-7	5.8	103
139	Nanostructured Hybrid Materials for the Selective Recovery and Enrichment of Rare Earth Elements. <i>Advanced Functional Materials</i> , 2014 , 24, 2668-2676	15.6	96
138	Evolution of mesoporous materials during the calcination process: structural and chemical behavior. <i>Microporous and Mesoporous Materials</i> , 2001 , 44-45, 95-109	5.3	91
137	One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed metal oxides (NiFe2O4, CuFe2O4 and Cu/CeO2). <i>Chemical Communications</i> , 2011 , 47, 10473-5	5.8	89
136	Novel oxygen carriers for chemical looping combustion: La1\(\mathbb{R}\)CexBO3 (B = Co, Mn) perovskites synthesized by reactive grinding and nanocasting. <i>Energy and Environmental Science</i> , 2011 , 4, 4258	35.4	88

135	Controlled Postgrafting of Titanium Chelates for Improved Synthesis of Ti-SBA-15 Epoxidation Catalysts. <i>Chemistry of Materials</i> , 2010 , 22, 1988-2000	9.6	87
134	Phosphonate-functionalized large pore 3-D cubic mesoporous (KIT-6) hybrid as highly efficient actinide extracting agent. <i>Chemical Communications</i> , 2011 , 47, 11525-7	5.8	81
133	pH-responsive nutraceutical-mesoporous silica nanoconjugates with enhanced colloidal stability. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2318-22	16.4	79
132	Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials. <i>Advanced Materials</i> , 2018 , 30, e1704439	24	75
131	Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1: Synthesis and Characterization. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3053-3058	3.8	74
130	Enhanced Relaxometric Properties of MRI P ositive © ontrast Agents Confined in Three-Dimensional Cubic Mesoporous Silica Nanoparticles. <i>Advanced Functional Materials</i> , 2011 , 21, 465	1 5466	2 ⁷¹
129	Cancer-Cell-Specific Nuclear-Targeted Drug Delivery by Dual-Ligand-Modified Mesoporous Silica Nanoparticles. <i>Small</i> , 2015 , 11, 5919-26	11	68
128	Mesoporous Silica Nanoparticles: Selective Surface Functionalization for Optimal Relaxometric and Drug Loading Performances. <i>Advanced Functional Materials</i> , 2014 , 24, 5911-5923	15.6	63
127	Tailor-Made Mesoporous Ti-SBA-15 Catalysts for Oxidative Desulfurization of Refractory Aromatic Sulfur Compounds in Transport Fuel. <i>ChemCatChem</i> , 2012 , 4, 687-697	5.2	63
126	A versatile method for the production of monodisperse spherical particles and hollow particles: templating from binary core-shell structures. <i>Chemical Communications</i> , 2006 , 1203-5	5.8	62
125	Spray-Dried Mesoporous Mixed Cu-Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Li-Ion Battery Anodes. <i>Advanced Energy Materials</i> , 2018 , 8, 1802438	21.8	62
124	Design of water-soluble CdSE tanateEickel nanocomposites for photocatalytic hydrogen production under sunlight. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13308	13	61
123	A Comprehensive Study of Titanium-Substituted SBA-15 Mesoporous Materials Prepared by Direct Synthesis. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14403-14411	3.8	59
122	In Vitro Dissolution, Cellular Membrane Permeability, and Anti-Inflammatory Response of Resveratrol-Encapsulated Mesoporous Silica Nanoparticles. <i>Molecular Pharmaceutics</i> , 2017 , 14, 4431-44	471 ⁶	58
121	On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18998-19004	13	55
120	Comprehensive Structure Analysis of Ordered Carbon Nanopipe Materials CMK-5 by X-ray Diffraction and Electron Microscopy. <i>Chemistry of Materials</i> , 2004 , 16, 2274-2281	9.6	54
119	Influence of Cosurfactants on the Properties of Mesostructured Materials. <i>Langmuir</i> , 2002 , 18, 4963-497	74	54
118	Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1712-1721	7.3	53

117	Intracellular Microenvironment-Responsive Dendrimer-Like Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. <i>Advanced Functional Materials</i> , 2014 , 24, 7627-7637	15.6	53	
116	Recent Advances in the Separation of Rare Earth Elements Using Mesoporous Hybrid Materials. <i>Chemical Record</i> , 2018 , 18, 1261	6.6	52	
115	Drug release from biodegradable silica fibers. <i>Journal of Non-Crystalline Solids</i> , 2002 , 306, 1-10	3.9	51	
114	Highly Efficient and Selective Recovery of Rare Earth Elements Using Mesoporous Silica Functionalized by Preorganized Chelating Ligands. <i>ACS Applied Materials & Description</i> , 19, 3858	84:385	9 3 °	
113	Nanoporous organosilica membrane for water desalination. <i>Chemical Communications</i> , 2013 , 49, 4534-6	5.8	50	
112	Optimizing Silica Synthesis for the Preparation of Mesoporous Ti-SBA-15 Epoxidation Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 6977-6985	3.9	50	
111	Pore topology control of three-dimensional large pore cubic silica mesophases. <i>Journal of Materials Chemistry</i> , 2005 , 15, 5112		49	
110	High-performance solid catalysts for H2 generation from ammonia borane: progress through synergetic Cu N i interactions. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14790	13	48	
109	A new route to size and population control of silver clusters on colloidal TiOIhanocrystals. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 2228-34	9.5	48	
108	Hindered Diffusion in Ordered Mesoporous Silicas: Insights from Pore-Scale Simulations in Physical Reconstructions of SBA-15 and KIT-6 Silica. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12350-12361	3.8	48	
107	Functionalization of Mesoporous Carbon Materials for Selective Separation of Lanthanides under Acidic Conditions. <i>ACS Applied Materials & Acidic Conditions</i> , 9, 12003-12012	9.5	47	
106	Luminescent triarylboron-functionalized zinc carboxylate metal-organic framework. <i>Inorganic Chemistry</i> , 2013 , 52, 1673-5	5.1	46	
105	Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 327-337	5.3	44	
104	Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. <i>Journal of Controlled Release</i> , 2020 , 326, 544-555	11.7	44	
103	On the nanopore confinement of therapeutic drugs into mesoporous silica materials and its implications. <i>Microporous and Mesoporous Materials</i> , 2018 , 270, 109-119	5.3	42	
102	Porous Mesostructured Zirconium Oxophosphate with Cubic (Ia3 d) Symmetry. <i>Chemistry of Materials</i> , 2002 , 14, 4134-4144	9.6	42	
101	Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies. <i>Nanoscale</i> , 2013 , 5, 11499-511	7.7	40	
100	Selective Separation and Preconcentration of Scandium with Mesoporous Silica. <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> . <i>ACS Applied Materials & Description of Scandium With Mesoporous Silica</i> .	9.5	40	

99	Direct ink writing of catalytically active UiO-66 polymer composites. <i>Chemical Communications</i> , 2019 , 55, 2190-2193	5.8	39
98	Kinetics of Methanol Oxidation over Mesoporous Perovskite Catalysts. <i>ChemCatChem</i> , 2012 , 4, 387-394	5.2	38
97	Substantiating the influence of pore surface functionalities on the stability of Grubbs catalyst in mesoporous SBA-15 silica. <i>Chemistry - A European Journal</i> , 2011 , 17, 4254-65	4.8	35
96	Surface properties and epoxidation catalytic activity of Ti-SBA15 prepared by direct synthesis. <i>Journal of Materials Science</i> , 2009 , 44, 6727-6735	4.3	35
95	Selectively Tuned Pore Condensation and Hysteresis Behavior in Mesoporous SBA-15 Silica: Correlating Material Synthesis to Advanced Gas Adsorption Analysis. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24505-24526	3.8	34
94	Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica I recent advances by combining physical adsorption with mercury porosimetry. <i>New Journal of Chemistry</i> , 2016 , 40, 4351-4	4360	34
93	Selective recovery of rare earth elements using chelating ligands grafted on mesoporous surfaces. <i>RSC Advances</i> , 2015 , 5, 103782-103789	3.7	33
92	A Toolbox for the Synthesis of Multifunctionalized Mesoporous Silica Nanoparticles for Biomedical Applications. <i>ACS Omega</i> , 2018 , 3, 17496-17510	3.9	33
91	Iron-Modified Mesoporous Silica as an Efficient Solid Lewis Acid Catalyst for the Mukaiyama Aldol Reaction. <i>ACS Catalysis</i> , 2018 , 8, 1932-1944	13.1	32
90	Large-pore mesoporous RuNi-doped TiO2Al2O3 nanocomposites for highly efficient selective CO methanation in hydrogen-rich reformate gases. <i>Applied Catalysis B: Environmental</i> , 2015 , 165, 752-762	21.8	31
89	Antibody-conjugated mesoporous silica nanoparticles for brain microvessel endothelial cell targeting. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 7721-7735	7.3	31
88	Insights into pore surface modification of mesoporous polymerBilica composites: introduction of reactive amines. <i>New Journal of Chemistry</i> , 2010 , 34, 355	3.6	30
87	Support effects in rare earth element separation using diglycolamide-functionalized mesoporous silica. <i>New Journal of Chemistry</i> , 2016 , 40, 4325-4334	3.6	29
86	Nanoporous organosilica membrane for water desalination: Theoretical study on the water transport. <i>Journal of Membrane Science</i> , 2015 , 482, 56-66	9.6	28
85	Critical assessment of the base catalysis properties of amino-functionalized mesoporous polymer-SBA-15 nanocomposites. <i>Applied Catalysis A: General</i> , 2015 , 504, 493-503	5.1	28
84	Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. <i>Angewandte Chemie</i> , 2012 , 124, 12654-12657	3.6	28
83	Lewis acidity quantification and catalytic activity of Ti, Zr and Al-supported mesoporous silica. <i>Dalton Transactions</i> , 2017 , 46, 3864-3876	4.3	27
82	Synthesis of mesoporous carbonBilica nanocomposite water-treatment membranes using a triconstituent co-assembly method. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10480-10491	13	27

(2017-2007)

81	Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 2: Diffusion. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3059-3065	3.8	27
80	Three-Dimensional Ordered Assembly of Thin-Shell Au/TiO2 Hollow Nanospheres for Enhanced Visible-Light-Driven Photocatalysis. <i>Angewandte Chemie</i> , 2014 , 126, 6736-6741	3.6	26
79	Controlled synthesis of titanate nanodisks as versatile building blocks for the design of hybrid nanostructures. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 6608-12	16.4	26
78	Selective separation and preconcentration of Th(IV) using organo-functionalized, hierarchically porous silica monoliths. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 289-302	13	24
77	Stereolithographic 3D printing of extrinsically self-healing composites. <i>Scientific Reports</i> , 2019 , 9, 388	4.9	23
76	Synthesis, structural characterization, and electrochemical performance of nanocast mesoporous Cu-/Fe-based oxides. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3065	13	23
75	Metal chelate grafting at the surface of mesoporous silica nanoparticles (MSNs): physico-chemical and biomedical imaging assessment. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 748-758	7.3	23
74	Mapping the location of grafted PNIPAAM in mesoporous SBA-15 silica using gas adsorption analysis. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5651-61	3.6	23
73	Size-Selective Separation of Rare Earth Elements Using Functionalized Mesoporous Silica Materials. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	21
72	Design of multicomponent photocatalysts for hydrogen production under visible light using water-soluble titanate nanodisks. <i>Nanoscale</i> , 2014 , 6, 4819-29	7.7	21
71	pH-Responsive Nutraceutical Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. <i>Angewandte Chemie</i> , 2013 , 125, 2374-2378	3.6	21
70	Large pore phenylene-bridged mesoporous organosilica with bicontinuous cubic lad (KIT-6) mesostructure. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8257		21
69	Influence of confinement in mesoporous silica on diffusion of a mixture of carbon dioxide and an imidazolium-based ionic liquid by high field diffusion NMR. <i>Microporous and Mesoporous Materials</i> , 2015 , 206, 177-183	5.3	20
68	Nanocast mesoporous mixed metal oxides for catalytic applications. <i>Comptes Rendus Chimie</i> , 2014 , 17, 641-655	2.7	19
67	Nanoporous ferrocene-based cross-linked polymers and their hydrogen sorption properties. <i>Microporous and Mesoporous Materials</i> , 2014 , 188, 182-189	5.3	18
66	Nanoporous ammonium molybdophosphateBilica hybrids as regenerable ultra-selective extraction agents for radiocesium monitoring. <i>New Journal of Chemistry</i> , 2013 , 37, 3877	3.6	18
65	A Covalent Organic Framework/Graphene Dual-Region Hydrogel for Enhanced Solar-Driven Water Generation <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	18
64	Carbon Dioxide Oversolubility in Nanoconfined Liquids for the Synthesis of Cyclic Carbonates. <i>ChemCatChem</i> , 2017 , 9, 1886-1890	5.2	17

63	A generalized method toward high dispersion of transition metals in large pore mesoporous metal oxide/silica hybrids. <i>Journal of Colloid and Interface Science</i> , 2015 , 449, 102-14	9.3	17
62	Fluorinated Mesoporous Silica Nanoparticles for Binuclear Probes in H and F Magnetic Resonance Imaging. <i>Langmuir</i> , 2017 , 33, 10531-10542	4	17
61	Mesoporous organosilica membranes: Effects of pore geometry and calcination conditions on the membrane distillation performance for desalination. <i>Desalination</i> , 2015 , 370, 53-62	10.3	17
60	Oxidation Stability of Nanographite Materials. <i>Advanced Energy Materials</i> , 2013 , 3, 1176-1179	21.8	17
59	Mesoporous Silica Nanoparticles under Sintering Conditions: A Quantitative Study. <i>Langmuir</i> , 2015 , 31, 13011-21	4	16
58	Morphology-transport relationships for SBA-15 and KIT-6 ordered mesoporous silicas. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 11314-11326	3.6	16
57	Synergy between structure direction and alkalinity toward fast crystallization, controlled morphology and high phase purity of ZSM-12 zeolite. <i>Microporous and Mesoporous Materials</i> , 2016 , 227, 258-271	5.3	16
56	A solvothermal single-step route towards shape-controlled titanium dioxide nanocrystals. <i>Canadian Journal of Chemical Engineering</i> , 2012 , 90, 8-17	2.3	16
55	Gastro-protective protein-silica nanoparticles formulation for oral drug delivery: In vitro release, cytotoxicity and mitochondrial activity. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2020 , 151, 171-180	5.7	16
54	Catalytic conversion of syngas to higher alcohols over mesoporous perovskite catalysts. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 51, 196-205	6.3	15
53	Smart Protein-Based Formulation of Dendritic Mesoporous Silica Nanoparticles: Toward Oral Delivery of Insulin. <i>Chemistry - A European Journal</i> , 2020 , 26, 5195-5199	4.8	15
52	Designed Synthesis of Mesoporous Solid-Supported Lewis Acid-Base Pairs and Their CO Adsorption Behaviors. <i>ACS Applied Materials & Designed Synthesis & Desi</i>	9.5	15
51	Smart surface-enhanced Raman scattering traceable drug delivery systems. <i>Nanoscale</i> , 2016 , 8, 12803-1	7 .7	15
50	Tailored Mesostructured Copper/Ceria Catalysts with Enhanced Performance for Preferential Oxidation of CO at Low Temperature. <i>Angewandte Chemie</i> , 2012 , 124, 12198-12201	3.6	14
49	On the Interaction of Phosphines with High Surface Area Mesoporous Silica. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 25919-25927	3.8	14
48	Synthesis and radiometric evaluation of diglycolamide functionalized mesoporous silica for the chromatographic separation of actinides Th, Pa and U. <i>Dalton Transactions</i> , 2018 , 47, 5189-5195	4.3	13
47	Confinement of the Grubbs catalyst in alkene-functionalized mesoporous silica. <i>Microporous and Mesoporous Materials</i> , 2013 , 175, 170-177	5.3	13
46	Grafted Amine/CO2 Interactions in (GasLiquidBolid Adsorption/Absorption Equilibria. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 21866-21876	3.8	13

(2008-2020)

45	Understanding Selectivity of Mesoporous Silica-Grafted Diglycolamide-Type Ligands in the Solid-Phase Extraction of Rare Earths. <i>ACS Applied Materials & Company: Interfaces</i> , 2020 , 12, 57003-57016	9.5	12
44	Zeolitic Core@Shell Adsorbents for the Selective Removal of Free Glycerol from Crude Biodiesel. <i>ChemSusChem</i> , 2015 , 8, 2093-105	8.3	12
43	Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis <i>Nature Communications</i> , 2022 , 13, 282	17.4	11
42	Tabletability of whey protein isolates. <i>International Dairy Journal</i> , 2012 , 27, 92-98	3.5	10
41	Mesoporous Nanocast Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. <i>Inorganics</i> , 2019 , 7, 98	2.9	9
40	Organic solvent treatment and physicochemical properties of nanoporous polymerBBA-15 composite materials. <i>Journal of Materials Science</i> , 2009 , 44, 6538-6545	4.3	9
39	Tailoring mesoporosity and intrawall porosity in large pore silicas: synthesis and nitrogen sorption behavior. <i>Studies in Surface Science and Catalysis</i> , 2008 , 141-148	1.8	9
38	Large pore ordered mesoporous silica materials with 3D cubic Ia3d structure: a comprehensive gas adsorption study. <i>Studies in Surface Science and Catalysis</i> , 2007 , 170, 1843-1849	1.8	9
37	Expanding horizons of mesoporous materials to non-siliceous systems. <i>Studies in Surface Science and Catalysis</i> , 2003 , 399-406	1.8	9
36	On the importance of the linking chemistry for the PEGylation of mesoporous silica nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2021 , 589, 453-461	9.3	9
35	Pore confinement and surface charge effects in protein-mesoporous silica nanoparticles formulation for oral drug delivery. <i>Microporous and Mesoporous Materials</i> , 2020 , 306, 110482	5.3	8
34	A microfluidic approach to micromembrane synthesis for complex release profiles of nanocarriers. <i>Lab on A Chip</i> , 2020 , 20, 1066-1071	7.2	8
33	Pore structure effects on the kinetics of methanol oxidation over nanocast mesoporous perovskites. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 32-42	11.3	8
32	Dynamic Electric Field Alignment of Metal-Organic Framework Microrods. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12989-12993	16.4	5
31	Polymer-Filled Composite Porous Catalytic Particles for Hydrodynamic Studies in Trickle-Bed Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 2569-2578	3.9	4
30	Nanocast Mixed NittoMn Oxides with Controlled Surface and Pore Structure for Electrochemical Oxygen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5597-5609	6.1	3
29	Exploring the confinement of polymer nanolayers into ordered mesoporous silica using advanced gas physisorption. <i>Journal of Colloid and Interface Science</i> , 2020 , 579, 489-507	9.3	3
28	Ordered Mesoporous Materials 2008 , 178		3

27	Texture effects of circularly ordered fibers. ChemPhysChem, 2005, 6, 1269-75	3.2	3
26	Mesoporous polymer-silica nanocomposites with stimuli responsive functional groups. <i>Microporous and Mesoporous Materials</i> , 2020 , 291, 109690	5.3	3
25	Metal-Free Hyper-Cross-Linked Polymers from Benzyl Methyl Ethers: A Route to Polymerization Catalyst Recycling. <i>Macromolecules</i> ,	5.5	3
24	A perspective on developing solid-phase extraction technologies for industrial-scale critical materials recovery <i>Green Chemistry</i> , 2022 , 24, 2752-2765	10	3
23	Nanoreactors: YolkBhell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation (Adv. Funct. Mater. 3/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 661-661	15.6	2
22	Controlled Synthesis of Titanate Nanodisks as Versatile Building Blocks for the Design of Hybrid Nanostructures. <i>Angewandte Chemie</i> , 2012 , 124, 6712-6716	3.6	2
21	Functionalized mesoporous organic-inorganic hybrids through pore surface-restricted post-polymerization. <i>Studies in Surface Science and Catalysis</i> , 2007 , 170, 1836-1842	1.8	2
20	Structural characterization and systematic gas adsorption studies on a series of novel ordered mesoporous silica materials with 3D cubic Ia-3d structure (KIT-6). <i>Studies in Surface Science and Catalysis</i> , 2007 , 161-164	1.8	2
19	Structure and properties of porous mesostructured zirconium oxo- phosphate with cubic (Ia3d) symmetry. <i>Studies in Surface Science and Catalysis</i> , 2003 , 146, 221-225	1.8	2
18	Nanocast nitrogen-containing ordered mesoporous carbons from glucosamine for selective CO2 capture. <i>Materials Today Sustainability</i> , 2021 , 100089	5	2
17	Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. <i>Journal of Colloid and Interface Science</i> , 2021 , 592, 296-309	9.3	2
16	Nanostructured Organosilica Hybrids as Highly Efficient and Regenerable Sorbents for Rare Earth Extraction. <i>ACS Symposium Series</i> , 2016 , 107-117	0.4	2
15	Irreversible Adsorption of Serum Proteins onto Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2021 , 38, 2000273	3.1	2
14	Evaporation-Induced Self-Assembly of Small Peptide-Conjugated Silica Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22700-22705	16.4	2
13	Phosphonated mesoporous silica nanoparticles bearing ruthenium complexes used as molecular probes for tracking oxygen levels in cells and tissues <i>RSC Advances</i> , 2021 , 11, 5865-5873	3.7	2
12	Back Cover: Controlled Synthesis of Titanate Nanodisks as Versatile Building Blocks for the Design of Hybrid Nanostructures (Angew. Chem. Int. Ed. 27/2012). <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 6794-6794	16.4	1
11	Ordered Microporous and Mesoporous Materials 2009 , 243-329		1
10	Reassessing the Physicochemical Properties of Ordered Mesoporous Polymer and Copolymer Nanocasts . <i>Chemie-Ingenieur-Technik</i> , 2021 , 93, 916-928	0.8	1

LIST OF PUBLICATIONS

9	Synthesis of microporous/mesoporous corelinell materials with crystalline zeolitic shell and supported metal oxide silica core. <i>CrystEngComm</i> , 2016 , 18, 4452-4464	3.3	1
8	Facile Synthesis of Spatially-Functionalized Core-Shell Nanocatalysts with 3-D Mesopore Structure. <i>ChemCatChem</i> , 2021 , 13, 1140-1145	5.2	1
7	Targeting Gut Bacteria Using Inulin-Conjugated Mesoporous Silica Nanoparticles. <i>Advanced Materials Interfaces</i> ,2102558	4.6	О
6	Targeting Gut Bacteria Using Inulin-Conjugated Mesoporous Silica Nanoparticles (Adv. Mater. Interfaces 14/2022). <i>Advanced Materials Interfaces</i> , 2022 , 9, 2270079	4.6	О
5	Nanoporous Sorbents: Nanostructured Hybrid Materials for the Selective Recovery and Enrichment of Rare Earth Elements (Adv. Funct. Mater. 18/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2667-266	7 ^{5.6}	
4	REktitelbild: Controlled Synthesis of Titanate Nanodisks as Versatile Building Blocks for the Design of Hybrid Nanostructures (Angew. Chem. 27/2012). <i>Angewandte Chemie</i> , 2012 , 124, 6900-6900	3.6	
3	Three-Dimensional large pore cubic silica mesophases with tailored pore topology: developments and characterization. <i>Studies in Surface Science and Catalysis</i> , 2007 , 165, 57-60	1.8	
2	In situ SAXS/XRD on mesoscopically ordered surfactant-silica mesophases; What can we learn?. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 847, 374		
1	Evaporation-Induced Self-Assembly of Small Peptide-Conjugated Silica Nanoparticles. <i>Angewandte Chemie</i> . 2021 , 133, 22882	3.6	