
Paul E Abraham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8467007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects. New Phytologist, 2022, 234, 1914-1918.	7.3	22
2	Development of an Experimental Approach to Achieve Spatially Resolved Plant Root-Associated Metaproteomics Using an Agar-Plate System. Molecular Plant-Microbe Interactions, 2022, 35, 639-649.	2.6	3
3	Proteomic and metabolic disturbances in lignin-modified <i>Brachypodium distachyon</i> . Plant Cell, 2022, 34, 3339-3363.	6.6	14
4	Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metabolic Engineering, 2021, 65, 111-122.	7.0	48
5	A lysate proteome engineering strategy for enhancing cell-free metabolite production. Metabolic Engineering Communications, 2021, 12, e00162.	3.6	11
6	Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. Horticulture Research, 2021, 8, 130.	6.3	20
7	Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptorâ€ŀike kinase. Plant Biotechnology Journal, 2021, 19, 2454-2468.	8.3	14
8	Temporal dynamics of protein and postâ€ŧranslational modification abundances in Populus leaf across a diurnal period. Proteomics, 2021, 21, 2100127.	2.2	0
9	Formation, characterization and modeling of emergent synthetic microbial communities. Computational and Structural Biotechnology Journal, 2021, 19, 1917-1927.	4.1	12
10	Metaproteomics reveals insights into microbial structure, interactions, and dynamic regulation in defined communities as they respond to environmental disturbance. BMC Microbiology, 2021, 21, 308.	3.3	11
11	The Moderately (D)efficient Enzyme: Catalysis-Related Damage <i>In Vivo</i> and Its Repair. Biochemistry, 2021, 60, 3555-3565.	2.5	5
12	Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering. ACS Synthetic Biology, 2021, 10, 3600-3603.	3.8	7
13	Structural and Proteomic Studies of the Aureococcus anophagefferens Virus Demonstrate a Global Distribution of Virus-Encoded Carbohydrate Processing. Frontiers in Microbiology, 2020, 11, 2047.	3.5	5
14	A Viable New Strategy for the Discovery of Peptide Proteolytic Cleavage Products in Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2020, 33, 1177-1188.	2.6	8
15	A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Scientific Reports, 2020, 10, 14985.	3.3	6
16	Molecular Remodeling in Populus PdKOR RNAi Roots Profiled Using LCâ€MS/MS Proteomics. Proteomics, 2020, 20, 2000067.	2.2	0
17	Outer membrane vesicles catabolize lignin-derived aromatic compounds in <i>Pseudomonas putida</i> KT2440. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9302-9310.	7.1	82
18	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	1.9	16

Paul E Abraham

#	Article	IF	CITATIONS
19	Advancing How We Learn from Biodesign to Mitigate Risks with Next-Generation Genome Engineering. Biodesign Research, 2020, 2020, .	1.9	4
20	Exploiting the Dynamic Relationship between Peptide Separation Quality and Peptide Coisolation in a Multiple-Peptide Matches-per-Spectrum Approach Offers a Strategy To Optimize Bottom-Up Proteomics Throughput and Depth. Analytical Chemistry, 2019, 91, 7273-7279.	6.5	17
21	Evaluation of an untargeted nano-liquid chromatography-mass spectrometry approach to expand coverage of low molecular weight dissolved organic matter in Arctic soil. Scientific Reports, 2019, 9, 5810.	3.3	16
22	The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Annals of Botany, 2019, 124, 617-626.	2.9	45
23	Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus) Tj ETQq1 1 0.78	4314 rgBT 2.5	- /Overlock
24	Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metabolic Engineering Communications, 2017, 5, 19-25.	3.6	93
25	Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nature Plants, 2016, 2, 16178.	9.3	158
26	Putting the Pieces Together: High-performance LC-MS/MS Provides Network-, Pathway-, and Protein-level Perspectives in Populus. Molecular and Cellular Proteomics, 2013, 12, 106-119.	3.8	26
27	Defining the Boundaries and Characterizing the Landscape of Functional Genome Expression in Vascular Tissues of <i>Populus</i> using Shotgun Proteomics. Journal of Proteome Research, 2012, 11, 449-460.	3.7	44