Miroslava DuÅ;kovÃ;-SmrÄkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8466554/publications.pdf

Version: 2024-02-01

59 papers

1,318 citations

331259 21 h-index 35 g-index

59 all docs

59 docs citations

59 times ranked

1561 citing authors

#	Article	IF	Citations
1	Network structure formation during crosslinking of organic coating systems. Progress in Polymer Science, 2000, 25, 1215-1260.	11.8	202
2	Role of cyclization in the degree-of-polymerization distribution of hyperbranched polymers. Polymer Bulletin, 1999, 42, 489-496.	1.7	106
3	Rheological and thermal properties of agarose aqueous solutions and hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 322-328.	2.4	87
4	Association in Solution and Adsorption at an Airâ 'Water Interface of Alternating Copolymers of Maleic Anhydride and Styrene. Langmuir, 2000, 16, 3757-3763.	1.6	66
5	Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers, 2020, 12, 578.	2.0	62
6	Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials, 2006, 27, 1140-1151.	5.7	54
7	Reductively Degradable Poly(2-hydroxyethyl methacrylate) Hydrogels with Oriented Porosity for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2017, 9, 10544-10553.	4.0	47
8	Title is missing!. Journal of Materials Science, 2002, 37, 4733-4741.	1.7	39
9	Novel Aromatic Azo-Containing pH-Sensitive Hydrogels:  Synthesis and Characterization. Macromolecules, 2002, 35, 7791-7803.	2.2	37
10	Wetting Dynamics of Alkyl Ketene Dimer on Cellulosic Model Surfaces. Langmuir, 1999, 15, 7863-7869.	1.6	34
11	Polyurethane networks with controlled architecture of dangling chains. Macromolecular Chemistry and Physics, 2002, 203, 1936-1948.	1.1	33
12	Solvent-free, catalyst-free aza-Michael addition of cyclohexylamine to diethyl maleate: Reaction mechanism and kinetics. Tetrahedron, 2018, 74, 58-67.	1.0	33
13	Methacrylate hydrogels reinforced with bacterial cellulose. Polymer International, 2012, 61, 1193-1201.	1.6	32
14	Highly-branched off-stoichiometric functional polymers as polymer networks precursors. Polymer, 2005, 46, 4265-4282.	1.8	31
15	Polymer Networks from Precursors of Defined Architecture. Activation of Preexisting Branch Points. Macromolecules, 2003, 36, 2915-2925.	2.2	30
16	Rheological properties of homogeneous and heterogeneous poly(2â€hydroxyethyl methacrylate) hydrogels. Polymer International, 2012, 61, 328-336.	1.6	29
17	Macroporous Biodegradable Cryogels of Synthetic Poly(\hat{l} ±-amino acids). Biomacromolecules, 2015, 16, 3455-3465.	2.6	26
18	Rheology and porosity control of poly(2-hydroxyethyl methacrylate) hydrogels. Polymer, 2013, 54, 661-672.	1.8	25

#	Article	IF	CITATIONS
19	Macroporous 2-hydroxyethyl methacrylate hydrogels of dual porosity for cell cultivation: morphology, swelling, permeability, and mechanical behavior. Journal of Polymer Research, 2014, 21, 1.	1.2	24
20	Effect of Dilution on Structure and Properties of Polyurethane Networks. Pregel and Postgel Cyclization and Phase Separation. Macromolecules, 2010, 43, 6450-6462.	2.2	23
21	Constrained Swelling of Polymer Networks: Characterization of Vapor-Deposited Cross-Linked Polymer Thin Films. Macromolecules, 2014, 47, 4417-4427.	2.2	21
22	Volume Phase Transition in Gels: Its Discovery and Development. Gels, 2020, 6, 22.	2.1	21
23	Modeling of Polymer Network Formation from Preformed Precursors. Macromolecular Reaction Engineering, 2012, 6, 426-445.	0.9	20
24	Revealing the True Morphological Structure of Macroporous Soft Hydrogels for Tissue Engineering. Applied Sciences (Switzerland), 2020, 10, 6672.	1.3	17
25	Coiled-Coil Hydrogels: Effect of Grafted Copolymer Composition and Cyclization on Gelation. Macromolecules, 2009, 42, 2265-2274.	2.2	16
26	Swelling Pressure Induced Phase-Volume Transition in Hybrid Biopolymer Gels Caused by Unfolding of Folded Crosslinks:Â A Model. Biomacromolecules, 2003, 4, 1818-1826.	2.6	15
27	Solvent activity changes and phase separation during crosslinking of coating films. Macromolecular Symposia, 2003, 198, 259-270.	0.4	14
28	Effect of diluent on the gel point and mechanical properties of polyurethane networks. Polymer Bulletin, 2007, 58, 201-211.	1.7	14
29	Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behavior. European Polymer Journal, 2018, 101, 304-313.	2.6	13
30	Network structure dependence of volume and glass transition temperature. Journal of Rheology, 2000, 44, 961-972.	1.3	12
31	Polymer Networks from Preformed Precursors Having Molecular Weight and Group Reactivity Distributions. Theory and Application. Macromolecules, 2013, 46, 2767-2784.	2.2	11
32	Biomimetic modification of dual porosity poly(2-hydroxyethyl methacrylate) hydrogel scaffoldsâ€"porosity and stem cell growth evaluation. Biomedical Materials (Bristol), 2019, 14, 055004.	1.7	10
33	How to Force Polymer Gels to Show Volume Phase Transitions. ACS Macro Letters, 2019, 8, 272-278.	2.3	10
34	The Manifold Varieties of Poly(2â€Hydroxyethyl Methacrylate) Hydrogelsâ^'IPNs. Macromolecular Symposia, 2017, 372, 28-42.	0.4	9
35	A model for swelling changes in a covalently crosslinked gel caused by unfolding of folded domains. Polymer Bulletin, 2001, 47, 351-358.	1.7	8
36	The Human Vocal Fold Layers. Their Delineation Inside Vocal Fold as a Background to Create 3D Digital and Synthetic Glottal Model. Journal of Voice, 2016, 30, 529-537.	0.6	7

#	Article	IF	CITATIONS
37	Communicating macropores in PHEMA-based hydrogels for cell seeding: Probabilistic open pore simulation and direct micro-CT proof. Materials and Design, 2021, 198, 109312.	3.3	7
38	Supramolecular hydrogelation via host-guest anion recognition: Lamellar hydrogel materials for the release of cationic cargo. CheM, 2021, 7, 2473-2490.	5.8	7
39	Scratch- and mar-resistant refinish two-pack clear coats — linear versus branched acrylics. Surface Coatings International Part B: Coatings Transactions, 2006, 89, 275-283.	0.3	6
40	Structure development in polyurethane networks based on star-like precursors. Journal of Coatings Technology Research, 2007, 4, 311-315.	1.2	6
41	Synthesis and characterization of calix[4]areneâ€containing polyimides. Polymer International, 2011, 60, 405-413.	1.6	6
42	Hydrogel tissue expanders for stomatology. Part I. Methacrylate-based polymers. Journal of Materials Science: Materials in Medicine, 2017, 28, 12.	1.7	6
43	Cure Curve with Two Plateaus - The Result of Individual Vulcanization Reactions. Journal of Polymer Engineering, 2001, 21, .	0.6	5
44	Effect of Constraints on Swelling of Polymer Networks. Macromolecular Symposia, 2015, 358, 120-127.	0.4	5
45	Branching theories and thermodynamics used to help designing precursor architectures and binder systems. Surface Coatings International Part B: Coatings Transactions, 2006, 89, 123-131.	0.3	4
46	Diluent Induced Cyclization and Phase Separation in Polymer Networks. Macromolecular Symposia, 2011, 306-307, 67-76.	0.4	4
47	Development of Self-oscillating Human Vocal Folds Prosthesis. Procedia Engineering, 2016, 144, 867-874.	1.2	4
48	Hydrogel Tissue Expanders for Stomatology. Part II. Poly(styrene-maleic anhydride) Hydrogels. Polymers, 2019, 11, 1087.	2.0	4
49	Wide-Cone Angle Phase-Contrast X-Ray Computed Tomography of Synthetic Polymer Materials. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 8910-8918.	2.4	4
50	Vapor pressure over stressed coating films. Polymer Bulletin, 2000, 45, 83-88.	1.7	3
51	Copolymer chain formation of 2-oxazolines by <i>in situ</i> ¹ H-NMR spectroscopy: dependence of sequential composition on substituent structure and monomer ratios. RSC Advances, 2021, 11, 10468-10478.	1.7	3
52	Multifunctional polyurethane network structures. Macromolecular Symposia, 1999, 148, 1-14.	0.4	2
53	Swelling of Coating Films. , 2017, , 271-291.		2
54	Role of Distributions in Binders and Curatives and Their Effect on Network Evolution and Structure., 2017,, 3-37.		1

#	Article	IF	CITATIONS
55	True Story of Poly(2-Hydroxyethyl Methacrylate)-Based Contact Lenses: How Did It Really Happen. Substantia, 0, , .	0.1	1
56	Constraints effects in swollen particulate composites with hyperelastic polymer matrix of finite extensibility modeled by FEM. Journal of Physics: Conference Series, 2014, 490, 012207.	0.3	0
57	Polymer Networks From Nanosized Functional Precursors. Macromolecular Symposia, 2017, 372, 14-27.	0.4	O
58	Polymer Networks: Structure, Properties, and Function. Macromolecular Symposia, 2019, 385, .	0.4	0
59	Analysis and removal of air pollutants from scorched wood. Journal of Wood Chemistry and Technology, 2020, 40, 248-257.	0.9	0