Maria G Pachiadaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8466461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parasitic infections by Group <scp>II</scp> Syndiniales target selected dinoflagellate host populations within diverse protist assemblages in a model coastal pond. Environmental Microbiology, 2022, 24, 1818-1834.	3.8	13
2	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	17.5	457
3	Diverse nitrogen cycling pathways across a marine oxygen gradient indicate nitrogen loss coupled to chemoautotrophic activity. Environmental Microbiology, 2021, 23, 2747-2764.	3.8	15
4	Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
5	Eukaryotic Parasites Are Integral to a Productive Microbial Food Web in Oxygen-Depleted Waters. Frontiers in Microbiology, 2021, 12, 764605.	3.5	11
6	<scp>Metaâ€omics</scp> highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environmental Microbiology, 2020, 22, 3950-3967.	3.8	25
7	Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME Journal, 2020, 14, 3079-3092.	9.8	36
8	Impacts of deepâ€sea mining on microbial ecosystem services. Limnology and Oceanography, 2020, 65, 1489-1510.	3.1	60
9	Anomalous δ ¹³ C in Particulate Organic Carbon at the Chemoautotrophy Maximum in the Cariaco Basin. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005276.	3.0	4
10	Hiding in Plain Sight: The Globally Distributed Bacterial Candidate Phylum PAUC34f. Frontiers in Microbiology, 2020, 11, 376.	3.5	5
11	Single Cell Genomics-Based Analysis of Gene Content and Expression of Prophages in a Diffuse-Flow Deep-Sea Hydrothermal System. Frontiers in Microbiology, 2019, 10, 1262.	3.5	14
12	Sampling and Processing Methods Impact Microbial Community Structure and Potential Activity in a Seasonally Anoxic Fjord: Saanich Inlet, British Columbia. Frontiers in Marine Science, 2019, 6, .	2.5	16
13	Charting the Complexity of the Marine Microbiome through Single-Cell Genomics. Cell, 2019, 179, 1623-1635.e11.	28.9	158
14	Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E400-E408.	7.1	146
15	Protistan parasites along oxygen gradients in a seasonally anoxic fjord: A network approach to assessing potential host-parasite interactions. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 156, 97-110.	1.4	28
16	Temporal shifts in dominant sulfur-oxidizing chemoautotrophic populations across the Cariaco Basin's redoxcline. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 156, 80-96.	1.4	14
17	Freeâ€ l iving chemoautotrophic and particleâ€attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environmental Microbiology, 2018, 20, 693-712.	3.8	46
18	Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nature Communications, 2017, 8, 84.	12.8	169

Maria G Pachiadaki

#	Article	IF	CITATIONS
19	Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 2017, 358, 1046-1051.	12.6	229
20	A Review of Protist Grazing Below the Photic Zone Emphasizing Studies of Oxygen-Depleted Water Columns and Recent Applications of In situ Approaches. Frontiers in Marine Science, 2017, 4, .	2.5	18
21	Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy. Frontiers in Microbiology, 2016, 7, 846.	3.5	52
22	Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins. ISME Journal, 2016, 10, 2643-2657.	9.8	30
23	Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 213-222.	1.4	72
24	In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 223-231.	1.4	31
25	Combined Culture-Based and Culture-Independent Approaches Provide Insights into Diversity of Jakobids, an Extremely Plesiomorphic Eukaryotic Lineage. Frontiers in Microbiology, 2015, 6, 1288.	3.5	20
26	Protist Community Grazing on Prokaryotic Prey in Deep Ocean Water Masses. PLoS ONE, 2015, 10, e0124505.	2.5	23
27	Size-fractionated diversity of eukaryotic microbial communities in the Eastern Tropical North Pacific oxygen minimum zone. FEMS Microbiology Ecology, 2015, 91, .	2.7	34
28	Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biology, 2015, 13, 105.	3.8	38
29	Depth shapes α―and βâ€diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environmental Microbiology, 2015, 17, 3722-3737.	3.8	98
30	Fixation filter, device for the rapid in situ preservation of particulate samples. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 96, 69-79.	1.4	19
31	Inter-comparison of the potentially active prokaryotic communities in the halocline sediments of Mediterranean deep-sea hypersaline basins. Extremophiles, 2015, 19, 949-960.	2.3	13
32	Living at the Limits: Evidence for Microbial Eukaryotes Thriving under Pressure in Deep Anoxic, Hypersaline Habitats. Advances in Ecology, 2014, 2014, 1-9.	0.5	17
33	In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiology Ecology, 2014, 90, 908-921.	2.7	40
34	Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Frontiers in Microbiology, 2014, 5, 605.	3.5	40
35	Protistan grazing in a meromictic freshwater lake with anoxic bottom water. FEMS Microbiology Ecology, 2014, 87, 691-703.	2.7	18
36	Ciliates along Oxyclines of Permanently Stratified Marine Water Columns. Journal of Eukaryotic Microbiology, 2014, 61, 434-445.	1.7	29

Maria G Pachiadaki

#	Article	IF	CITATIONS
37	Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME Journal, 2014, 8, 2478-2489.	9.8	42
38	Changes of bacterioplankton apparent species richness in two ornamental fish aquaria. SpringerPlus, 2013, 2, 66.	1.2	11
39	Interconnectivity vs. isolation of prokaryotic communities in European deep-sea mud volcanoes. Biogeosciences, 2013, 10, 2821-2831.	3.3	14
40	New findings on the true-branched monotypic genus Iphinoe (Cyanobacteria) from geographically isolated caves (Greece) Fottea, 2013, 13, 15-23.	0.9	13
41	Low Bacterial Diversity and High Labile Organic Matter Concentrations in the Sediments of the Medee Deep-Sea Hypersaline Anoxic Basin. Microbes and Environments, 2012, 27, 504-508.	1.6	10
42	Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles, 2012, 16, 21-34.	2.3	82
43	Diversity and Spatial Distribution of Prokaryotic Communities Along A Sediment Vertical Profile of A Deep-Sea Mud Volcano. Microbial Ecology, 2011, 62, 655-668.	2.8	69
44	Changes of the bacterial assemblages throughout an urban drinking water distribution system. Environmental Monitoring and Assessment, 2010, 165, 27-38.	2.7	61
45	Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiology Ecology, 2010, 72, 429-444.	2.7	67
46	Biodiversity of Cold Seep Ecosystems Along the European Margins. Oceanography, 2009, 22, 110-127.	1.0	140