
Atsuko Tomita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8466300/publications.pdf Version: 2024-02-01

Δτεμκό Τομιτά

#	Article	IF	CITATIONS
1	Construction of model for estimating rate constant of SCR reaction over hydrothermally aged Cu-CHA catalyst. Transactions of the JSME (in Japanese), 2022, , .	0.2	0
2	A Robust Mesoporous Al 2 O 3 â€Based Nanocomposite Catalyst for Abundant NO x Storage with Rational Design of Pt and Ba Species. Chemistry - A European Journal, 2021, 27, 6706-6712.	3.3	3
3	Effect of water treatment and Ce doping of Pt/Al2O3 catalysts on Pt sintering and propane oxidation. Research on Chemical Intermediates, 2021, 47, 2935-2950.	2.7	5
4	Understanding of NOx storage property of impregnated Ba species after crystallization of mesoporous alumina powders. Journal of Hazardous Materials, 2020, 398, 122791.	12.4	11
5	Deactivation Mechanism of Pd/CeO ₂ –ZrO ₂ Three-Way Catalysts Analyzed by Chassis-Dynamometer Tests and <i>in Situ</i> Diffuse Reflectance Spectroscopy. ACS Catalysis, 2019, 9, 6415-6424.	11.2	40
6	In Situ Time-Resolved Redox Dynamics of Pd Catalysts Under Oscillating A/F Conditions. Topics in Catalysis, 2019, 62, 345-350.	2.8	5
7	Mesopore Connectivity Improving Aerosol-Assisted Synthesis of Mesoporous Alumina Powders with High Surface Area. Langmuir, 2018, 34, 13781-13787.	3.5	21
8	Mechanism of Lowâ€Temperature Carbon Combustion Over Agâ€Pd/Alumina Catalysts. ChemistrySelect, 2017, 2, 8632-8637.	1.5	0
9	Effect of water treatment and Fe doping on Pt sintering and the propane oxidation activity of Pt/Al 2 O 3. Applied Catalysis A: General, 2016, 522, 138-144.	4.3	20
10	Fe Kâ€Edge Xâ€ray Absorption Fine Structure Determination of γâ€Al ₂ O ₃ â€&upported Ironâ€Oxide Species. ChemPhysChem, 2015, 16, 2015-2020.	2.1	11
11	Importance of Metal-oxide Interfaces for Low Temperature CO Oxidation over Supported Au and FeO _{<i>x</i>} Promoted Pt Catalysts. Journal of the Japan Petroleum Institute, 2015, 58, 218-227.	0.6	7
12	Effect of Metal Oxide Promoters on Low Temperature CO Oxidation over Water-Pretreated Pt/Alumina Catalysts. Catalysis Letters, 2014, 144, 1689-1695.	2.6	13
13	C-3 alkylation of oxindole with alcohols by Pt/CeO ₂ catalyst in additive-free conditions. Catalysis Science and Technology, 2014, 4, 1064-1069.	4.1	46
14	Mechanism of Low-Temperature CO Oxidation on Pt/Fe-Containing Alumina Catalysts Pretreated with Water. Journal of Physical Chemistry C, 2013, 117, 1268-1277.	3.1	45
15	Pt/Fe-containing alumina catalysts prepared and treated with water under moderate conditions exhibit low-temperature CO oxidation activity. Catalysis Communications, 2012, 17, 194-199.	3.3	33
16	A Single hamber SOFC Stack: Energy Recovery from Engine Exhaust. Fuel Cells, 2008, 8, 322-329.	2.4	27
17	Direct Oxidation of Methane to Methanol at Low Temperature and Pressure in an Electrochemical Fuel Cell. Angewandte Chemie - International Edition, 2008, 47, 1462-1464.	13.8	89
18	A Protonâ€Conducting Fuel Cell Operating with Hydrocarbon Fuels. Angewandte Chemie - International Edition, 2008, 47, 7841-7844.	13.8	68

Ατςυκό Τομιτά

#	Article	IF	CITATIONS
19	De-NOx reactor and NOx sensor using In3+-doped SnP2O7 with PtRhBa/C electrode. Solid State Ionics, 2008, 179, 1655-1661.	2.7	6
20	A Single-Chamber SOFC Stack Operating in Engine Exhaust. Electrochemical and Solid-State Letters, 2008, 11, B29.	2.2	34
21	Nano-Sized Electrochemical Reactors for Selective NOx Reduction. Electrochemical and Solid-State Letters, 2008, 11, P9.	2.2	1
22	Blocking of Electronic Current through a Ce[sub 0.9]Gd[sub 0.1]O[sub 1.95] Electrolyte Film by Growth of a Thin BaCe[sub 1â^'x]Gd[sub x]O[sub 3â~'α] Layer. Electrochemical and Solid-State Letters, 2008, 11, B68.	2.2	20
23	Single-Chamber SOFCs Using Dimethyl Ether and Ethanol. Journal of the Electrochemical Society, 2007, 154, B865.	2.9	18
24	Sn[sub 0.9]In[sub 0.1]P[sub 2]O[sub 7]-Based Organic/Inorganic Composite Membranes. Journal of the Electrochemical Society, 2007, 154, B63.	2.9	34
25	Intermediate-Temperature Proton Conduction in Al[sup 3+]-Doped SnP[sub 2]O[sub 7]. Journal of the Electrochemical Society, 2007, 154, B1265.	2.9	95
26	Room-Temperature Hydrogen Sensors Based on an In[sup 3+]-Doped SnP[sub 2]O[sub 7] Proton Conductor. Journal of the Electrochemical Society, 2007, 154, J172.	2.9	28
27	Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ionics, 2007, 177, 3351-3359.	2.7	238
28	Selective catalytic reduction of NOx by H2 using proton conductors as catalyst supports. Journal of Catalysis, 2007, 247, 137-144.	6.2	46
29	An Intermediate-Temperature Fuel Cell Using a Proton-Conducting Sn0.9In0.1P2O7 Electrolyte. Transactions of the Materials Research Society of Japan, 2007, 32, 951-954.	0.2	0
30	A Proton-Conducting In[sup 3+]-Doped SnP[sub 2]O[sub 7] Electrolyte for Intermediate-Temperature Fuel Cells. Electrochemical and Solid-State Letters, 2006, 9, A105.	2.2	135
31	Proton Conduction in In[sup 3+]-Doped SnP[sub 2]O[sub 7] at Intermediate Temperatures. Journal of the Electrochemical Society, 2006, 153, A1604.	2.9	149
32	Chemical and redox stabilities of a solid oxide fuel cell with BaCe0.8Y0.2O3â ^{~^} α functioning as an electrolyte and as an anode. Solid State Ionics, 2006, 177, 2951-2956.	2.7	41
33	Proton Conduction in In3+-doped SnP2O7 with Various P/(Sn+In) Ratios. ECS Transactions, 2006, 2, 43-49.	0.5	2
34	Intermediate-Temperature NOx Sensor Based on an In[sup 3+]-Doped SnP[sub 2]O[sub 7] Proton Conductor. Electrochemical and Solid-State Letters, 2006, 9, H48.	2.2	21
35	Comparative Performance of Anode-Supported SOFCs Using a Thin Ce[sub 0.9]Gd[sub 0.1]O[sub 1.95] Electrolyte with an Incorporated BaCe[sub 0.8]Y[sub 0.2]O[sub 3â^î±] Layer in Hydrogen and Methane. Journal of the Electrochemical Society, 2006, 153, A956.	2.9	46
36	Improvement of a reduction-resistant CeSmO electrolyte by optimizing a thin BaCeSmO layer for intermediate-temperature SOFCs. Solid State Ionics, 2005, 176, 881-887.	2.7	93

Ατςυκό Τομιτά

#	Article	IF	CITATIONS
37	Single-Chamber SOFCs with a Ce[sub 0.9]Gd[sub 0.1]O[sub 1.95] Electrolyte Film for Low-Temperature Operation. Electrochemical and Solid-State Letters, 2005, 8, A63.	2.2	30
38	Surface Modification of a Doped BaCeO[sub 3] to Function as an Electrolyte and as an Anode for SOFCs. Electrochemical and Solid-State Letters, 2005, 8, A333.	2.2	15
39	Solid oxide fuel cells operating without using an anode material. Solid State Ionics, 2004, 168, 23-29.	2.7	25
40	SOFC-type microreactors that generate hydrogen for PEFC applications. Solid State Ionics, 2004, 174, 9-13.	2.7	0
41	Design of a Reduction-Resistant Ce[sub 0.8]Sm[sub 0.2]O[sub 1.9] Electrolyte Through Growth of a Thin BaCe[sub 1â^'x]Sm[sub x]O[sub 3â^'α] Layer over Electrolyte Surface. Electrochemical and Solid-State Letters, 2004, 7, A318.	2.2	54
42	Preparations and Electrochemical Properties of Pyrazine-Bridged Ruthenium-Binuclear Complexes Exhibiting Molecular Hysteresis. Inorganic Chemistry, 2000, 39, 200-205.	4.0	34
43	Equilibria, kinetics and mechanism of complexation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin and its N-methylated derivative with cadmium(II) and zinc(II) ions in aqueous solution at various temperatures and pressures. Effects of metal ion size and porphyrin ring deformation on metal ion incorporation. Inorganica Chimica Acta. 1997. 256. 77-85.	2.4	30
44	Electron Transfer Reaction Accompanied by a Structural Change. In the Case of Reaction with [Ru(NH3)5(butyl sulfoxide)]2+andcis-[Ru(NH3)4(pyridine-4-carboxamide)2]3+. Bulletin of the Chemical Society of Japan, 1996, 69, 977-981.	3.2	7
45	Determination of Memory Life of a Molecular Hysteresis Molecule by Thin Layer CV. Chemistry Letters, 1996, 25, 981-982.	1.3	5
46	Linkage Isomerizations of (Sulfoxide)ammineruthenium Complexes Induced by Electrochemical Processes. Inorganic Chemistry, 1994, 33, 5825-5830.	4.0	46
47	Kinetic Modeling Study of NOx Conversion Based on Physicochemical Characteristics of Hydrothermally Aged SCR/DPF Catalyst. SAE International Journal of Fuels and Lubricants, 0, 10, .	0.2	5