
Neil J Mansfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/846579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole-Body Vibration Experienced by Pilots, Passengers and Crew in Fixed-Wing Aircraft: A State-of-the-Science Review. Vibration, 2022, 5, 110-120.	1.9	9
2	PCQ: Preferred Comfort Questionnaires for product design. Work, 2021, 68, S19-S28.	1.1	10
3	Introduction to the special issue on comfort: A review of 26 papers from the International Comfort Congress 2019. Work, 2021, 68, S1-S5.	1.1	0
4	Driver seat comfort for level 3-4 autonomous vehicles. Work, 2021, 68, S111-S118.	1.1	1
5	Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams. Materials, 2021, 14, 949.	2.9	5
6	Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm. Energies, 2021, 14, 4642.	3.1	13
7	Integrating and applying models of comfort. Applied Ergonomics, 2020, 82, 102917.	3.1	33
8	Cross-validating models of continuous data from simulation and experiment by using linear regression and artificial neural networks. Informatics in Medicine Unlocked, 2020, 21, 100457.	3.4	7
9	Physiological correlates of cognitive load in laparoscopic surgery. Scientific Reports, 2020, 10, 12927.	3.3	13
10	Exploring Seat Movement While Driving - What Do Drivers Think?. Advances in Intelligent Systems and Computing, 2019, , 573-578.	0.6	0
11	Models of the human in dynamic environments. , 2019, , 487-496.		2
12	Engineering movement into automotive seating: Does the driver feel more comfortable and refreshed?. Applied Ergonomics, 2019, 74, 214-220.	3.1	18
13	Effect of long term driving on driver discomfort and its relationship with seat fidgets and movements (SFMs). Applied Ergonomics, 2017, 58, 119-127.	3.1	73
14	Driving a better driving experience: a questionnaire survey of older compared with younger drivers. Ergonomics, 2017, 60, 533-540.	2.1	21
15	Neonatal head and torso vibration exposure during inter-hospital transfer. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 99-113.	1.8	29
16	Improving long term driving comfort by taking breaks – How break activity affects effectiveness. Applied Ergonomics, 2017, 65, 81-89.	3.1	11
17	A study investigating the comparative situation awareness of older and younger drivers when driving a route with extended periods of cognitive taxation. Transportation Research Part F: Traffic Psychology and Behaviour, 2017, 49, 145-158.	3.7	7
18	An approach to vehicle design: In-depth audit to understand the needs of older drivers. Applied Ergonomics, 2017, 58, 461-470.	3.1	5

NEIL J MANSFIELD

#	Article	IF	CITATIONS
19	Contribution of individual components of a job cycle on overall severity of whole-body vibration exposure: a study in Indian mines. International Journal of Occupational Safety and Ergonomics, 2016, 22, 142-151.	1.9	13
20	Ranking of Design Journals Based on Results of the UK Research Excellence Framework: Using REF as Referee. Design Journal, 2016, 19, 903-919.	0.8	4
21	Long-term Discomfort Evaluation: Comparison of Reported Discomfort between a Concept Elevated Driving Posture and a Conventional Driving Posture. Procedia Manufacturing, 2015, 3, 2387-2394.	1.9	3
22	Driving performance and driver discomfort in an elevated and standard driving position during a driving simulation. Applied Ergonomics, 2015, 49, 25-33.	3.1	25
23	Predicting the health risks related to whole-body vibration and shock: a comparison of alternative assessment methods for high-acceleration events in vehicles. Ergonomics, 2015, 58, 1071-1087.	2.1	13
24	Driver discomfort in vehicle seats – Effect of changing road conditions and seat foam composition. Applied Ergonomics, 2015, 50, 153-159.	3.1	57
25	Foreword to 5th International Conference on Whole Body Vibration Injuries held at Academic Medical Center, University of Amsterdam, The Netherlands, 5–7 June 2013. Ergonomics, 2015, 58, 1061-1062.	2.1	0
26	Combined Effects of Long-Term Sitting and Whole-Body Vibration on Discomfort Onset for Vehicle Occupants. ISRN Automotive Engineering, 2014, 2014, 1-8.	0.8	34
27	A survey of expert opinion on the effects of occupational exposures to trunk rotation and whole-body vibration. Ergonomics, 2014, 57, 563-574.	2.1	28
28	Future electric vehicles for ambulances (FEVA). Journal of Paramedic Practice: the Clinical Monthly for Emergency Care Professionals, 2013, 5, 77-82.	0.1	1
29	CURE (Community Urgent Response Environment): portable work stations. Journal of Paramedic Practice: the Clinical Monthly for Emergency Care Professionals, 2012, 4, 352-358.	0.1	4
30	Whole Body Vibration in Helicopters: Risk Assessment in Relation to Low Back Pain. Aviation, Space, and Environmental Medicine, 2011, 82, 790-796.	0.5	31
31	Subjective ratings of whole-body vibration for single- and multi-axis motion. Journal of the Acoustical Society of America, 2011, 130, 3723-3728.	1.1	15
32	Relative Contribution of Translational and Rotational Vibration to Discomfort. Industrial Health, 2010, 48, 519-529.	1.0	15
33	Effects of horizontal whole-body vibration and standing posture on activity interference. Ergonomics, 2010, 53, 365-374.	2.1	23
34	A biomechanical analysis of common lunge tasks in badminton. Journal of Sports Sciences, 2010, 28, 183-191.	2.0	102
35	Earth Moving Machine Whole-body Vibration and the Contribution of Sub-1Hz Components to ISO 2631-1 Metrics. Industrial Health, 2009, 47, 402-410.	1.0	6
36	Evaluation Of Vibration Training Platforms. Medicine and Science in Sports and Exercise, 2009, 41, 534.	0.4	0

Neil J Mansfield

#	Article	IF	CITATIONS
37	Evaluation of reaction time performance and subjective workload during whole-body vibration exposure while seated in upright and twisted postures with and without armrests. International Journal of Industrial Ergonomics, 2008, 38, 499-508.	2.6	75
38	Variation between manufacturers' declared vibration emission values and those measured under simulated workplace conditions for a range of hand-held power tools typically found in the construction industry. International Journal of Industrial Ergonomics, 2008, 38, 661-675.	2.6	22
39	Evaluation of subjective responses to whole-body vibration exposure: Effect of frequency content. International Journal of Industrial Ergonomics, 2008, 38, 509-515.	2.6	28
40	The influence of content, task and sensory interaction on multimedia quality perception. Ergonomics, 2008, 51, 85-97.	2.1	6
41	Risks and benefits of whole body vibration training in older people. Age and Ageing, 2008, 38, 254-255.	1.6	27
42	Changes in subjective ratings of impulsive steering wheel vibration due to changes in noise level: a cross-modal interaction. International Journal of Vehicle Noise and Vibration, 2007, 3, 185.	0.1	5
43	Design of Digital Filters for Frequency Weightings Required for Risk Assessments of Workers Exposed to Vibration. Industrial Health, 2007, 45, 512-519.	1.0	58
44	Self-reported musculoskeletal problems amongst professional truck drivers. Ergonomics, 2007, 50, 814-827.	2.1	115
45	The apparent mass of the seated human exposed to single-axis and multi-axis whole-body vibration. Journal of Biomechanics, 2007, 40, 2543-2551.	2.1	51
46	Inter-cycle variation in whole-body vibration exposures of operators driving track-type loader machines. Journal of Sound and Vibration, 2006, 298, 563-579.	3.9	15
47	Comparison of the apparent masses and cross-axis apparent masses of seated humans exposed to single- and dual-axis whole-body vibration. Journal of Sound and Vibration, 2006, 298, 841-853.	3.9	39
48	Effect of vibration magnitude, vibration spectrum and muscle tension on apparent mass and cross axis transfer functions during whole-body vibration exposure. Journal of Biomechanics, 2006, 39, 3062-3070.	2.1	32
49	Influence of carrying heavy loads on soldiers' posture, movements and gait. Ergonomics, 2006, 49, 1527-1537.	2.1	220
50	Comparison of the Apparent Mass of the Seated Human Measured Using Random and Sinusoidal Vibration. Industrial Health, 2005, 43, 233-240.	1.0	14
51	Impedance Methods (Apparent Mass, Driving Point Mechanical Impedance and Absorbed Power) for Assessment of the Biomechanical Response of the Seated Person to Whole-body Vibration. Industrial Health, 2005, 43, 378-389.	1.0	49
52	Evaluation of impact sound on the â€~feel' of a golf shot. Journal of Sound and Vibration, 2005, 287, 651-666.	3.9	36
53	Comparison of the Apparent Mass during Exposure to Whole-Body Vertical Vibration between Japanese Subjects and ISO 5982 Standard. Industrial Health, 2005, 43, 436-440.	1.0	14
54	Effect of Backrest and Torso Twist on the Apparent Mass of the Seated Body Exposed to Vertical Vibration. Industrial Health, 2005, 43, 413-420.	1.0	19

Neil J Mansfield

#	Article	IF	CITATIONS
55	Equal sensation curves for whole-body vibration expressed as a function of driving force. Journal of the Acoustical Society of America, 2005, 117, 3853-3859.	1.1	9
56	The European vibration directive – how will it affect the dental profession?. British Dental Journal, 2005, 199, 575-577.	0.6	11
57	Low Frequency Lateral Acceleration and Subjective Ratings of Acceleration Intensity and Driving Confidence in Production Cars. Journal of Low Frequency Noise Vibration and Active Control, 2004, 23, 221-230.	2.9	2
58	Symptoms of musculoskeletal disorders in stage rally drivers and co-drivers. British Journal of Sports Medicine, 2001, 35, 314-320.	6.7	49
59	Difference thresholds for automobile seat vibration. Applied Ergonomics, 2000, 31, 255-261.	3.1	45
60	Non-linearities in apparent mass and transmissibility during exposure to whole-body vertical vibration. Journal of Biomechanics, 2000, 33, 933-941.	2.1	159