Giang Vo-Thanh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8465445/publications.pdf

Version: 2024-02-01

33 papers	808 citations	15 h-index	5	28 g-index
38 all docs	38 docs citations	38 times ranked		871 citing authors

#	Article	IF	CITATIONS
1	First application of chiral ionic liquids in asymmetric Baylis–Hillman reaction. Tetrahedron Letters, 2004, 45, 6425-6428.	1.4	177
2	Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron, 2010, 66, 1352-1356.	1.9	91
3	Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels–Alder reaction. Tetrahedron, 2009, 65, 2260-2265.	1.9	67
4	Chiral ionic liquids derived from isosorbide: synthesis, properties and applications in asymmetric synthesis. New Journal of Chemistry, 2009, 33, 2060.	2.8	62
5	<i>S</i> -Trifluoromethyl Sulfoximine as a Directing Group in <i>Ortho</i> -Lithiation Reaction toward Structural Complexity. Organic Letters, 2016, 18, 5102-5105.	4.6	55
6	Asymmetric Transfer Hydrogenation of Aromatic Ketones Using Rhodium Complexes of Chiral Nâ∈Heterocyclic Carbenes Derived from (⟨i⟩S⟨/i⟩)â∈Pyroglutamic Acid. European Journal of Organic Chemistry, 2011, 2011, 2772-2776.	2.4	32
7	Efficient copper-induced coupling between NH-fluoroalkylated sulfoximines and aryl iodides or bromides. Tetrahedron, 2011, 67, 7575-7580.	1.9	30
8	Synthesis of functionalized chiral ammonium, imidazolium, and pyridinium-based ionic liquids derived from (â^')-ephedrine using solvent-free microwave activation. Applications for the asymmetric Michael addition. Tetrahedron, 2010, 66, 5277-5282.	1.9	29
9	Synthesis of Novel Chiral Ammonium-Based Ionic Liquids Derived from Isosorbide and their Applications in an Asymmetric Aza Diels-Alder Reaction. Letters in Organic Chemistry, 2007, 4, 158-167.	0.5	27
10	New class of chiral ligands derived from isosorbide: first application in asymmetric transfer hydrogenation. Tetrahedron: Asymmetry, 2010, 21, 1542-1548.	1.8	24
11	Chiral Ionic Liquids Derived from (-)-Ephedrine and Carbohydrates: Synthesis, Properties and Applications to Asymmetric Synthesis and Catalysis. Current Organic Synthesis, 2012, 9, 53-64.	1.3	24
12	Synthesis of a new class of ligands derived from isosorbide and their application to asymmetric reduction of aromatic ketones by transfer hydrogenation. New Journal of Chemistry, 2011, 35, 2622.	2.8	23
13	Asymmetric aza-Diels-Alder reaction of Danishefsky's diene with imines in a chiral reaction medium. Beilstein Journal of Organic Chemistry, 2006, 2, 18.	2,2	22
14	Synthesis of chiral thiourea–phosphine organocatalysts derived from l-proline. Tetrahedron Letters, 2014, 55, 6377-6380.	1.4	17
15	Synthesis of novel chiral monophosphine ligands derived from isomannide and isosorbide. Application to enantioselective hydrogenation of olefins. Tetrahedron Letters, 2012, 53, 4900-4902.	1.4	16
16	Fast and Efficient Hantzsch Synthesis Using Acidâ€Activated and Cationâ€Exchanged Montmorillonite Catalysts under Solventâ€Free Microwave Irradiation Conditions. ChemistrySelect, 2017, 2, 12041-12045.	1.5	12
17	An ionic compound containing Ru(III)-complex cation and phosphotungstate anion as the efficient and recyclable catalyst for clean aerobic oxidation of alcohols. Catalysis Communications, 2012, 28, 152-154.	3.3	11
18	Organocatalyzed [4+2] Annulation of Allâ€Carbon Tetrasubstituted Alkenes with Allenoates: Synthesis of Highly Functionalized 2 <i>H</i> à€•and 4 <i>H</i> ―Pyran Derivatives ChemistrySelect, 2016, 1, 5414-5420.	1.5	10

#	Article	IF	CITATIONS
19	The oxidative halogenations of arenes in water using hydrogen peroxide and halide salts over an ionic catalyst containing sulfo group and hexafluorotitanate. Journal of Molecular Catalysis A, 2013, 371, 56-62.	4.8	9
20	First Isolation of Enantiopure Perfluoroalkylated Sulfilimines and Sulfoximines. Chimia, 2014, 68, 410.	0.6	9
21	Functionalized S-perfluorinated sulfoximines: Preparation and evaluation in catalytic processes. Journal of Fluorine Chemistry, 2015, 179, 179-187.	1.7	8
22	Phosphine–Thioureaâ€Organocatalyzed Asymmetric Câ^'N and Câ^'S Bond Formation Reactions. Asian Journal of Organic Chemistry, 2016, 5, 895-899.	2.7	8
23	Alkylidene Meldrum's Acids as Platforms for the Vinylogous Synthesis of Dihydropyranones. Angewandte Chemie - International Edition, 2021, 60, 11110-11114.	13.8	8
24	Heterogeneous transfer hydrogenation over mesoporous SBA-15 co-modified by anionic sulfonate and cationic Ru(III) complex. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2013, 144, 851-858.	1.8	7
25	Novel Class of Reversible Chiral Ionic Liquids Derived from Natural Amino Acids: Synthesis and Characterization ChemistrySelect, 2018, 3, 958-962.	1.5	5
26	Auto Tandem Catalysis: Asymmetric Vinylogous Cycloaddition/Kinetic Resolution Sequence for the Enantioselective Synthesis of Spiroâ€Dihydropyranone from Benzylidene Meldrum's Acid. Advanced Synthesis and Catalysis, 2021, 363, 4452-4458.	4.3	5
27	Enantioselective hydrophosphonylation of <i>N</i> -Boc imines using chiral guanidine–thiourea catalysts. Organic and Biomolecular Chemistry, 2021, 19, 10560-10564.	2.8	5
28	Biosourced Ligands from Isosorbide for the Ethylation of Aldehydes or Alkynylation of Imines. Asian Journal of Organic Chemistry, 2016, 5, 1242-1246.	2.7	4
29	Dialkyl imidazolium acetate ionosilica as efficient and recyclable organocatalyst for cyanosilylation reactions of ketones. Green Energy and Environment, 2020, 5, 130-137.	8.7	4
30	Alkylidene Meldrum's Acids as Platforms for the Vinylogous Synthesis of Dihydropyranones. Angewandte Chemie, 2021, 133, 11210-11214.	2.0	3
31	Bifunctional Nâ€Heterocylic Carbeneâ€Catalyzed Highly Enantioselective Transâ€Cyclopentannulation of Enals and Enones via Homoenolate. ChemCatChem, 2021, 13, 712-717.	3.7	2
32	Structural modification and biological activity studies of tagitinin C and its derivatives. Tetrahedron, 2021, 92, 132248.	1.9	2
33	Chiral catalysts derived from biomass: design, synthesis and applications in asymmetric catalysis. Vietnam Journal of Chemistry, 2019, 57, 670-680.	0.8	О