List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8465209/publications.pdf Version: 2024-02-01

Τλέλο Μορι

#	Article	IF	CITATIONS
1	Recent Progress on Mixed-Anion Materials for Energy Applications. Bulletin of the Chemical Society of Japan, 2022, 95, 26-37.	3.2	51
2	Constructed Ge Quantum Dots and Sn Precipitate SiGeSn Hybrid Film with High Thermoelectric Performance at Low Temperature Region. Advanced Energy Materials, 2022, 12, .	19.5	22
3	Microstructurally Tailored Thin βâ€Ag ₂ Se Films toward Commercial Flexible Thermoelectrics. Advanced Materials, 2022, 34, e2104786.	21.0	47
4	Nanostructured Bulk Thermoelectric Materials for Energy Harvesting. NIMS Monographs, 2022, , 199-231.	0.3	5
5	Key properties of inorganic thermoelectric materials—tables (version 1). JPhys Energy, 2022, 4, 022002.	5.3	51
6	Heterometallic Benzenehexathiolato Coordination Nanosheets: Periodic Structure Improves Crystallinity and Electrical Conductivity. Advanced Materials, 2022, 34, e2106204.	21.0	24
7	New record high thermoelectric ZT of delafossite-based CuCrO2 thin films obtained by simultaneously reducing electrical resistivity and thermal conductivity via heavy doping with controlled residual stress. Applied Surface Science, 2022, 583, 152526.	6.1	5
8	Thermoelectric properties of Nb-doped Sr1â^'x (La0.5Na0.5) x TiO3 perovskites. Applied Physics Express, 2022, 15, 011003.	2.4	1
9	The Effect of Reactive Electric Field-Assisted Sintering of MoS2/Bi2Te3 Heterostructure on the Phase Integrity of Bi2Te3 Matrix and the Thermoelectric Properties. Materials, 2022, 15, 53.	2.9	11
10	Rational Design of 3d Transition-Metal Compounds for Thermoelectric Properties by Using Periodic Trends in Electron-Correlation Modulation. Journal of the American Chemical Society, 2022, 144, 3590-3602.	13.7	7
11	High solubility of Al and enhanced thermoelectric performance due to resonant states in Fe2VAlx. Applied Physics Letters, 2022, 120, .	3.3	14
12	Thermoelectric Performance of n-Type Magnetic Element Doped Bi ₂ S ₃ . ACS Applied Energy Materials, 2022, 5, 3845-3853.	5.1	19
13	Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nature Communications, 2022, 13, 1120.	12.8	101
14	Improvement of Thermoelectric Properties via Texturation Using a Magnetic Slip Casting Process–The Illustrative Case of CrSi ₂ . Chemistry of Materials, 2022, 34, 1143-1156.	6.7	3
15	Thermal conductivity of rare-earth titanate pyrochlores. Physical Review Materials, 2022, 6, .	2.4	2
16	Thermoelectric properties of Sm-doped BiCuSeO oxyselenides fabricated by two-step reactive sintering. Journal of Alloys and Compounds, 2022, 912, 165208.	5.5	10
17	Facile Fabrication of N-Type Flexible CoSb3-xTex Skutterudite/PEDOT:PSS Hybrid Thermoelectric Films. Polymers, 2022, 14, 1986.	4.5	2
18	Miniaturized in-plane ï€-type thermoelectric device composed of a Il–IV semiconductor thin film prepared by microfabrication. Materials Today Energy, 2022, 28, 101075.	4.7	13

#	Article	IF	CITATIONS
19	Anderson transition in stoichiometric Fe2VAI: high thermoelectric performance from impurity bands. Nature Communications, 2022, 13, .	12.8	15
20	Large thermoelectric power factors by opening the band gap in semimetallic Heusler alloys. Materials Today Physics, 2022, 27, 100742.	6.0	5
21	Revealing an elusive metastable wurtzite CuFeS2 and the phase switching between wurtzite and chalcopyrite for thermoelectric thin films. Acta Materialia, 2022, 235, 118090.	7.9	10
22	A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energy and Environmental Science, 2022, 15, 3388-3399.	30.8	63
23	Energy‣aving Pathways for Thermoelectric Nanomaterial Synthesis: Hydrothermal/Solvothermal, Microwaveâ€Assisted, Solutionâ€Based, and Powder Processing. Advanced Science, 2022, 9, .	11.2	60
24	The role of sulfur valency on thermoelectric properties of sulfur ion implanted copper iodide. Journal of Alloys and Compounds, 2022, 921, 166103.	5.5	4
25	Realization of closed-loop optimization of epitaxial titanium nitride thin-film growth via machine learning. Materials Today Physics, 2021, 16, 100296.	6.0	22
26	Transport properties of a molybdenum antimonide-telluride with dispersed NiSb nanoparticles. Materials Chemistry and Physics, 2021, 260, 124061.	4.0	1
27	Role of phase separation in nanocomposite indium-tin-oxide films for transparent thermoelectric applications. Journal of Materiomics, 2021, 7, 612-620.	5.7	28
28	Anionic conduction mediated giant n-type Seebeck coefficient in doped Poly(3-hexylthiophene) free-standing films. Materials Today Physics, 2021, 16, 100307.	6.0	11
29	Improved thermoelectric performance of GeTe via efficient yttrium doping. Applied Physics Letters, 2021, 118, .	3.3	25
30	The electronic pseudo band gap states and electronic transport of the full-Heusler compound Fe ₂ VAl. Journal of Materials Chemistry C, 2021, 9, 2073-2085.	5.5	17
31	Bonding heterogeneity in mixed-anion compounds realizes ultralow lattice thermal conductivity. Journal of Materials Chemistry A, 2021, 9, 22660-22669.	10.3	14
32	A material catalogue with glass-like thermal conductivity mediated by crystallographic occupancy for thermoelectric application. Energy and Environmental Science, 2021, 14, 3579-3587.	30.8	37
33	Improvement of power factor in the room temperature range of Mg ₂ Sn _{1â^'x } Ge _x . Japanese Journal of Applied Physics, 2021, 60, SBBF06.	1.5	6
34	Thermoelectric Performance of Cr Doped and Cr–Fe Double-Doped Higher Manganese Silicides with Adjusted Carrier Concentration and Significant Electron–Phonon Interaction. ACS Applied Materials & Interfaces, 2021, 13, 8574-8583.	8.0	18
35	Boosting the thermoelectric performance of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:n Heusler compounds by band engineering. Physical Review B, 2021, 103, .</mml:n </mml:msub></mml:mrow></mml:math 	111 82 2 /mm	l :n₄¤ > < /mml:
36	Effect of native defects on thermoelectric properties of copper iodide films. Emergent Materials, 2021, 4, 761-768.	5.7	25

3

#	Article	IF	CITATIONS
37	Preparation of Ordered Nanoporous Indium Tin Oxides with Large Crystallites and Individual Control over Their Thermal and Electrical Conductivities. ACS Applied Materials & Interfaces, 2021, 13, 15373-15382.	8.0	8
38	Thermoelectric Performance Enhancement of the Cost-Effective Phosphide ZnCu2P8. ACS Applied Energy Materials, 2021, 4, 4861-4866.	5.1	7
39	Recent Developments and Progress on BiCuSeO Based Thermoelectric Materials. Nanobiotechnology Reports, 2021, 16, 294-307.	0.6	9
40	Demonstration of ultrahigh thermoelectric efficiency of â^¼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule, 2021, 5, 1196-1208.	24.0	205
41	The roles of interstitial oxygen and phase compositions on the thermoelectric properties CuCr0.85Mg0.15O2 delafossite material. Journal of Alloys and Compounds, 2021, 867, 158995.	5.5	10
42	Physical Insights on the Lattice Softening Driven Midâ€Temperature Range Thermoelectrics of Ti/Zrâ€Inserted SnTeâ€"An Outlook Beyond the Horizons of Conventional Phonon Scattering and Excavation of Heikes' Equation for Estimating Carrier Properties. Advanced Energy Materials, 2021, 11, 2101122. Junit and annealing effects on the microstructure Samp: thermoelectric properties of	19.5	39
43	<pre><mml:math altimg="si5.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>Fe</mml:mtext><mml:mn>2</mml:mn></mml:msub>< mathvariant="normal">V<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^</mml:mo><mml:mi mathvariant="normal">x</mml:mi></mml:mrow><mml:msub><mml:msub><mml:msub></mml:msub>a^</mml:msub></mml:msub><</mml:mrow></mml:math></pre>	mml:msub 7.9	> < mml:mi 14
44	mathyariant="normal">x <mml:msub><mml:mtext>AlThe low and high temperature thermoelectric properties of Yb3Si5. Materials Research Express, 2021, 8, 075504.</mml:mtext></mml:msub>	1.6	3
45	Effect of microstructure on lattice thermal conductivity of thermoelectric chalcopyrite CuFeS ₂ : experimental and computational studies. Applied Physics Express, 2021, 14, 087002.	2.4	7
46	Thermoelectrics: Physical Insights on the Lattice Softening Driven Midâ€Temperature Range Thermoelectrics of Ti/Zrâ€Inserted SnTe—An Outlook Beyond the Horizons of Conventional Phonon Scattering and Excavation of Heikes' Equation for Estimating Carrier Properties (Adv. Energy Mater.) Tj ETQq0) d d d gBT	/ðverlock 10
47	Control of Competing Thermodynamics and Kinetics in Vapor Phase Thin-Film Growth of Nitrides and Borides. Frontiers in Chemistry, 2021, 9, 642388.	3.6	4
48	Thermoelectric Performance Enhancement of Film by Pulse Electric Field and Multiâ€Nanocomposite Strategy. Small, 2021, 17, e2100554.	10.0	9
49	Robust, Transparent Hybrid Thin Films of Phase-Change Material Sb ₂ S ₃ Prepared by Electrophoretic Deposition. ACS Applied Energy Materials, 2021, 4, 9891-9901.	5.1	15
50	Thermoelectric materials taking advantage of spin entropy: lessons from chalcogenides and oxides. Science and Technology of Advanced Materials, 2021, 22, 583-596.	6.1	27
51	Synthesis of novel hexamolybdenum cluster-functionalized copper hydroxide nanocomposites and its catalytic activity for organic molecule degradation. Science and Technology of Advanced Materials, 2021, 22, 758-771.	6.1	3
52	Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legs. Crystals, 2021, 11, 1140.	2.2	4
53	Thermoelectric properties of zinc-doped Cu5Sn2Se7 and Cu5Sn2Te7. Dalton Transactions, 2021, 50, 6561-6567.	3.3	7
54	Investigation on the Power Factor of Skutterudite Smy(FexNi1â^'x)4Sb12 Thin Films: Effects of Deposition and Annealing Temperature. Materials, 2021, 14, 5773.	2.9	4

#	Article	IF	CITATIONS
55	Effect of Nanostructuring on the Thermoelectric Properties of \hat{I}^2 -FeSi2. Nanomaterials, 2021, 11, 2852.	4.1	10
56	Flexible <i>n</i> -Type Abundant Chalcopyrite/PEDOT:PSS/Graphene Hybrid Film for Thermoelectric Device Utilizing Low-Grade Heat. ACS Applied Materials & Interfaces, 2021, 13, 51245-51254.	8.0	24
57	Induced 2H-Phase Formation and Low Thermal Conductivity by Reactive Spark Plasma Sintering of 1T-Phase Pristine and Co-Doped MoS ₂ Nanosheets. ACS Omega, 2021, 6, 32783-32790.	3.5	3
58	Synthesis and Characterization of Al- and SnO2-Doped ZnO Thermoelectric Thin Films. Materials, 2021, 14, 6929.	2.9	6
59	Thermoelectric materials developments: past, present, and future. Science and Technology of Advanced Materials, 2021, 22, 998-999.	6.1	6
60	High power factor in epitaxial Mg2Sn thin films via Ga doping. Applied Physics Letters, 2021, 119, .	3.3	8
61	Theory of huge thermoelectric effect based on a magnon drag mechanism: Application to thin-film Heusler alloy. Physical Review B, 2021, 104, .	3.2	18
62	Determination of thermal diffusivity of thin films by applying Fourier expansion analysis to thermo-reflectance signal after periodic pulse heating. Journal of Applied Physics, 2021, 130, .	2.5	5
63	On the thermoelectric and magnetic properties, hardness, and crystal structure of the higher boride YbB66. Journal of Alloys and Compounds, 2020, 813, 152182.	5.5	8
64	Mesostructure - thermoelectric properties relationships in V Mn1â^'Si1.74 (xÂ= 0, 0.04) higher manganese silicides preparedÂbyÂmagnesiothermy. Journal of Alloys and Compounds, 2020, 816, 152577.	5.5	15
65	Role of excess tellurium on the electrical and thermal properties in Te-doped paracostibite. Journal of Materials Chemistry C, 2020, 8, 1811-1818.	5.5	10
66	Thermoelectric properties of phase pure boron carbide prepared by a solution-based method. Advances in Applied Ceramics, 2020, 119, 97-106.	1.1	11
67	Exploring the thermoelectric behavior of spark plasma sintered Fe7-xCoxS8 compounds. Journal of Alloys and Compounds, 2020, 819, 152999.	5.5	16
68	Thermoelectric properties of MgTi2O5/TiN conductive composites prepared via reactive spark plasma sintering for high temperature functional applications. Scripta Materialia, 2020, 178, 44-50.	5.2	10
69	dz2 orbital character of polyhedra in complex solid-state transition-metal compounds. Dalton Transactions, 2020, 49, 431-437.	3.3	3
70	Magnetism and superconductivity of rare earth borides. Journal of Alloys and Compounds, 2020, 821, 153201.	5.5	50
71	Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy, 2020, 78, 105186.	16.0	185
72	High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. Advanced Energy Materials, 2020, 10, 2002588.	19.5	75

#	Article	IF	CITATIONS
73	Influence of Carrier Density and Energy Barrier Scattering on a High Seebeck Coefficient and Power Factor in Transparent Thermoelectric Copper Iodide. ACS Applied Energy Materials, 2020, 3, 10037-10044.	5.1	49
74	Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction. NPG Asia Materials, 2020, 12, .	7.9	32
75	Nanostructured planar-type uni-leg Si thermoelectric generators. Applied Physics Express, 2020, 13, 095001.	2.4	25
76	New Synthesis Route for Complex Borides; Rapid Synthesis of Thermoelectric Yttrium Aluminoboride via Liquid-Phase Assisted Reactive Spark Plasma Sintering. Scientific Reports, 2020, 10, 8914.	3.3	8
77	Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides. Nature Communications, 2020, 11, 5923.	12.8	20
78	Tailoring the thermoelectric and structural properties of Cu–Sn based thiospinel compounds [CuM _{1+x} Sn _{1â^'x} S ₄ (M = Ti, V, Cr, Co)]. Journal of Materials Chemistry C, 2020, 8, 16368-16383.	5.5	21
79	Rare earth higher borides. Fundamental Theories of Physics, 2020, 58, 39-154.	0.3	5
80	Crystal structure and high temperature X-ray diffraction study of thermoelectric chimney-ladder FeGe (γ â‰^ 1.52). Journal of Alloys and Compounds, 2020, 846, 155696.	5.5	4
81	Significant off-stoichiometry effect leading to the N-type conduction and ferromagnetic properties in titanium doped Fe2VAl thin films. Acta Materialia, 2020, 200, 848-856.	7.9	17
82	Improvement in the thermoelectric properties of porous networked Al-doped ZnO nanostructured materials synthesized <i>via</i> an alternative interfacial reaction and low-pressure SPS processing. Inorganic Chemistry Frontiers, 2020, 7, 4118-4132.	6.0	46
83	Screening of transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and rare-earth (La and Pr) elements as potential effective dopants for thermoelectric GeTe – an experimental and theoretical appraisal. Journal of Materials Chemistry A, 2020, 8, 19805-19821.	10.3	43
84	Influence of Stoichiometry and Aging at Operating Temperature on Thermoelectric Higher Manganese Silicides. Chemistry of Materials, 2020, 32, 10601-10609.	6.7	17
85	Improvement of Thermoelectric Properties of Evaporated ZnO:Al Films by CNT and Au Nanocomposites. Journal of Physical Chemistry C, 2020, 124, 12713-12722.	3.1	8
86	Unusual Lattice Dynamics and Anisotropic Thermal Conductivity in In2Te5 Due to a Layered Structure and Planar-Coordinated Te-Chains. Chemistry of Materials, 2020, 32, 5335-5342.	6.7	22
87	Drastic power factor improvement by Te doping of rare earth-free CoSb3-skutterudite thin films. RSC Advances, 2020, 10, 21129-21135.	3.6	14
88	Thermoelectric and magnetic properties of spark plasma sintered REB66 (RE = Y, Sm, Ho, Tm, Yb). Journal of the European Ceramic Society, 2020, 40, 3585-3591.	5.7	6
89	Direct synthesis of p-type bulk BiCuSeO oxyselenides by reactive spark plasma sintering and related thermoelectric properties. Scripta Materialia, 2020, 187, 317-322.	5.2	9
90	Is Lil a Potential Dopant Candidate to Enhance the Thermoelectric Performance in Sb-Free GeTe Systems? A Prelusive Study. Energies, 2020, 13, 643.	3.1	26

#	Article	IF	CITATIONS
91	Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the Highâ€Performance GeTe Thermoelectric Material. Small, 2020, 16, e1906921.	10.0	129
92	Rational Design of Spinel-Type Cu ₄ Mn ₂ Te ₄ /TMTe (TM = Co, Ni) Composites with Synergistically Manipulated Electrical and Thermal Transport Properties. ACS Applied Energy Materials, 2020, 3, 2096-2102.	5.1	5
93	Proximity coupling of superconducting nanograins with fractal distributions. Physical Review B, 2020, 101, .	3.2	2
94	Sticky thermoelectric materials for flexible thermoelectric modules to capture low–temperature waste heat. MRS Advances, 2020, 5, 481-487.	0.9	4
95	Experimental investigation of reciprocity of temperature response across two layer samples by flash method. Review of Scientific Instruments, 2020, 91, 014905.	1.3	2
96	Fabrication and Thermoelectric Properties of Chromium Silicide Thin Films. Sensors and Materials, 2020, 32, 2433.	0.5	2
97	Rapid synthesis of thermoelectric YB ₂₂ C ₂ N via spark plasma sintering with gas/solid reaction technology. Journal of the Ceramic Society of Japan, 2020, 128, 181-185.	1.1	3
98	Seebeck coefficients in CuFeS2thin films by first-principles calculations. Japanese Journal of Applied Physics, 2019, 58, SIIB01.	1.5	3
99	Thermoelectric properties of amorphous ZnO <i>x</i> N <i>y</i> thin films at room temperature. Applied Physics Letters, 2019, 114, .	3.3	17
100	Crystal Growth and some Properties of Tm(Al _{1-x} Mo _x)B ₄ Synthesized by Al-Flux. Solid State Phenomena, 2019, 289, 65-70.	0.3	1
101	Thermoelectric performance of a metastable thin-film Heusler alloy. Nature, 2019, 576, 85-90.	27.8	232
102	Spectroscopic characterization at THz frequencies of glucose-based biomaterials: paramylon, paramylon-ester and cellulose. , 2019, , .		0
103	Structural Properties and Thermoelectric Performance of the Double-Filled Skutterudite (Sm,Gd)y(FexNi1-x)4Sb12. Materials, 2019, 12, 2451.	2.9	15
104	Crystal Growth and Physical Properties of Lu(Al _{1-x} <i>T</i> _x)B ₄ (<i>T</i> = Fe, Cr) by Al-Self Flux. Solid State Phenomena, 2019, 289, 120-126.	0.3	3
105	Facile p–n control, and magnetic and thermoelectric properties of chromium selenides Cr2+xSe3. Journal of Materials Chemistry C, 2019, 7, 8269-8276.	5.5	18
106	Enhanced thermoelectric performance through crystal field engineering in transition metal–doped GeTe. Materials Today Physics, 2019, 9, 100094.	6.0	85
107	Influence of Slight Substitution (Mn/In) on Thermoelectric and Magnetic Properties in Chalcopyrite-Type CulnTe2. Journal of Electronic Materials, 2019, 48, 4524-4532.	2.2	7
108	Thermoelectric Enhancement of Silicon Membranes by Ultrathin Amorphous Films. ACS Applied Materials & Materials & Materials & Source (19, 11, 12027-12031.	8.0	25

#	Article	IF	CITATIONS
109	Thermoelectric and magnetic properties of rare earth borides: Boron cluster and layered compounds. Journal of Solid State Chemistry, 2019, 275, 70-82.	2.9	62
110	Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite. Materials Today Physics, 2019, 9, 100090.	6.0	112
111	Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet. Science Advances, 2019, 5, eaat5935.	10.3	143
112	Anisotropic thermal transport in magnetic intercalates <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Fe</mml:mi> <mml:n Physical Review B, 2019, 99, .</mml:n </mml:msub></mml:mrow></mml:math 	ni> 8 .∕⊈mml	:m iæ
113	Development of thermoelectric thin films and characterization methods. Journal of Physics: Conference Series, 2019, 1407, 012055.	0.4	1
114	Thermoelectric Materials and Applicative Issues for Energy Harvesting to Power IoT Sensors and Devices. , 2019, , .		1
115	Magnesioreduction Synthesis of Co-Doped β-FeSi2: Mechanism, Microstructure, and Improved Thermoelectric Properties. ACS Applied Energy Materials, 2019, 2, 8525-8534.	5.1	20
116	Origin of Band Modulation in GeTe-Rich Ge–Sb–Te Thin Film. ACS Applied Electronic Materials, 2019, 1, 2619-2625.	4.3	3
117	Fabrication of Mg2Sn(111) film by molecular beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	8
118	Development of Nanoscale Thermocouple Probes for Local Thermal Measurements. E-Journal of Surface Science and Nanotechnology, 2019, 17, 102-107.	0.4	2
119	Reactive spark plasma sintering and thermoelectric properties of Nd-substituted BiCuSeO oxyselenides. Journal of Alloys and Compounds, 2019, 785, 96-104.	5.5	18
120	Noncovalent Modification of Single-Walled Carbon Nanotubes Using Thermally Cleavable Polythiophenes for Solution-Processed Thermoelectric Films. ACS Applied Materials & Interfaces, 2019, 11, 4211-4218.	8.0	22
121	Syntheses and Properties of Yb(Al _{1â^'x} <i>T</i> _x)B ₄ (<i>T</i> = Cr,) Tj ET Metallurgy, 2019, 66, 525-529.	Qq1 1 0.78 0.2	84314 rgBT 2
122	Microstructure analysis and thermoelectric properties of iron doped CuGaTe2. Journal of Materiomics, 2018, 4, 221-227.	5.7	24
123	Local Atomic Arrangements and Band Structure of Boron Carbide. Angewandte Chemie - International Edition, 2018, 57, 6130-6135.	13.8	39
124	Thermoelectric Properties of Variants of Cu4Mn2Te4 with Spinel-Related Structure. Inorganic Chemistry, 2018, 57, 5258-5266.	4.0	12
125	Materials for energy harvesting: At the forefront of a new wave. MRS Bulletin, 2018, 43, 176-180.	3.5	150
126	Effect of addition of SiC and Al2O3 refractories on Kapitza resistance of antimonide-telluride. AIP Advances, 2018, 8, .	1.3	12

#	Article	IF	CITATIONS
127	Enhanced thermoelectric performance of Bi–Sb–Te/Sb ₂ O ₃ nanocomposites by energy filtering effect. Journal of Materials Chemistry A, 2018, 6, 21341-21349.	10.3	116
128	Synthesis and the physical properties of layered copper oxytellurides Sr ₂ TMCu ₂ Te ₂ O ₂ (TM = Mn, Co, Zn). Journal of Materials Chemistry C, 2018, 6, 12260-12266.	5.5	15
129	Probing of Thermal Transport in 50 nm Thick PbTe Nanocrystal Films by Time-Domain Thermoreflectance. Journal of Physical Chemistry C, 2018, 122, 27127-27134.	3.1	15
130	Thermoelectric materials and applications for energy harvesting power generation. Science and Technology of Advanced Materials, 2018, 19, 836-862.	6.1	413
131	Thermoelectric Properties of Bi-Doped Magnesium Silicide Stannides. ACS Applied Materials & Interfaces, 2018, 10, 40585-40591.	8.0	22
132	Novel Materials and Processes to Develop Viable Thermoelectrics. Journal of Physics: Conference Series, 2018, 1052, 012001.	0.4	1
133	Focus on advanced materials for energy harvesting: prospects and approaches of energy harvesting technologies. Science and Technology of Advanced Materials, 2018, 19, 543-544.	6.1	16
134	Coupling of charge carriers with magnetic entropy for power factor enhancement in Mn doped Sn _{1.03} Te for thermoelectric applications. Journal of Materials Chemistry C, 2018, 6, 6489-6493.	5.5	56
135	Visualizing nanoscale heat pathways. Nano Energy, 2018, 52, 323-328.	16.0	16
136	Organic π-type thermoelectric module supported by photolithographic mold: a working hypothesis of sticky thermoelectric materials. Science and Technology of Advanced Materials, 2018, 19, 517-525.	6.1	27
137	Synthesis of morphology controllable aluminum nitride by direct nitridation of γ-AlOOH in the presence of N ₂ H ₄ and their sintering behavior. Journal of Asian Ceramic Societies, 2018, 6, 63-69.	2.3	7
138	Rapid deposition and thermoelectric properties of ytterbium boride thin films using hybrid physical chemical vapor deposition. Materialia, 2018, 1, 244-248.	2.7	12
139	Zr doped β-rhombohedral boron: Widely variable Seebeck coefficient and structural properties. Acta Materialia, 2017, 122, 378-385.	7.9	18
140	Effect of spark plasma sintering (SPS) on the thermoelectric properties of magnesium ferrite. Materials for Renewable and Sustainable Energy, 2017, 6, 1.	3.6	13
141	Synthesis and thermoelectric properties of composite oxides in the pseudobinary system ZnO-Ga2O3. Solid State Sciences, 2017, 65, 29-32.	3.2	24
142	Sb Doping of Metallic CuCr ₂ S ₄ as a Route to Highly Improved Thermoelectric Properties. Chemistry of Materials, 2017, 29, 2988-2996.	6.7	68
143	First-principles calculations of Seebeck coefficients in a magnetic semiconductor CuFeS2. Applied Physics Letters, 2017, 110, .	3.3	34
144	Thermoelectric properties of CuGa _{1â^²x} Mn _x Te ₂ : power factor enhancement by incorporation of magnetic ions. Journal of Materials Chemistry A, 2017, 5, 7545-7554.	10.3	135

#	Article	IF	CITATIONS
145	Pressure Effect on the Einstein-Like Phonon Mode in Superconducting \$\$hbox {YB}_{6}\$\$ YB 6. Journal of Low Temperature Physics, 2017, 187, 553-558.	1.4	2
146	Pressure Dependence of the Ginzburg–Landau Parameter in Superconducting \$\$hbox {YB}_{6}\$\$ YB 6. Journal of Low Temperature Physics, 2017, 187, 559-564.	1.4	3
147	Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics. Small, 2017, 13, 1702013.	10.0	265
148	An alternative, faster and simpler method for the formation of hierarchically porous ZnO particles and their thermoelectric performance. RSC Advances, 2017, 7, 31960-31968.	3.6	22
149	Evaluation of the f-electron rare-earth copper telluride GdCu1+xTe2 as a thermoelectric material. Journal of Solid State Chemistry, 2017, 255, 193-199.	2.9	2
150	On the boron rich phases in the Yb-B system. Journal of Solid State Chemistry, 2017, 255, 172-177.	2.9	8
151	Comparative Study of Exchange–Correlation Functional and Potential for Evaluating Thermoelectric Transport Properties in <i>d</i> ⁰ Perovskite Oxides. Journal of the Physical Society of Japan, 2017, 86, 074705.	1.6	6
152	Thermoelectric properties of a magnetic semiconductor CuFeS2. Materials Today Physics, 2017, 3, 85-92.	6.0	59
153	Thermal conductivity of PrRh4.8B2, a layered boride compound. APL Materials, 2017, 5, 126103.	5.1	28
154	Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy, 2017, 31, 152-159.	16.0	201
155	Transport properties of single-component organic conductors, TED derivatives. Molecular Systems Design and Engineering, 2017, 2, 653-658.	3.4	2
156	Development of Thermoelectric Materials Based on Iron Sulfide Minerals. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 173-179.	0.2	4
157	Boson peak investigation of glassy glucose by terahertz time-domain spectroscopy and low-frequency raman scattering. , 2017, , .		0
158	Development of micro / nano-size hollow silicate particles for thermal energy saving application. MRS Advances, 2016, 1, 3947-3952.	0.9	2
159	Anisotropic thermoelectric properties in layered complex nitrides with α-NaFeO ₂ -type structure. APL Materials, 2016, 4, 104808.	5.1	12
160	Deposition of thermoelectric strontium hexaboride thin films by a low pressure CVD method. Journal of Crystal Growth, 2016, 449, 10-14.	1.5	22
161	Perspectives of High-Temperature Thermoelectric Applications and p-type and n-type Aluminoborides. Jom, 2016, 68, 2673-2679.	1.9	47
162	Sintering characteristics and thermoelectric properties of Mn–Al co-doped ZnO ceramics. Journal of the Ceramic Society of Japan, 2016, 124, 515-522.	1.1	22

#	Article	IF	CITATIONS
163	Thermoelectric Properties of Ni _{0.05} Mo ₃ Sb _{5.4} Te _{1.6} with Embedded SiC and Al ₂ O ₃ Nanoparticles. European Journal of Inorganic Chemistry, 2016, 2016, 853-860.	2.0	9
164	Thermoelectric properties of the chalcopyrite Cu1â^'xMxFeS2â^'y series (M = Mn, Co, Ni). RSC Advances, 2016, 6, 55117-55124.	3.6	36
165	Effect of two different size chiral ligand-capped gold nanoparticle dopants on the electro-optic and dielectric dynamics of a ferroelectric liquid crystal mixture. Liquid Crystals, 2016, 43, 695-703.	2.2	34
166	Effect of Nanostructuring and High-Pressure Torsion Process on Thermal Conductivity of Carrier-Doped Chalcopyrite. Journal of Electronic Materials, 2016, 45, 1642-1647.	2.2	12
167	Hybrid effect to possibly overcome the trade-off between Seebeck coefficient and electrical conductivity. Scripta Materialia, 2016, 111, 44-48.	5.2	61
168	Crystal growth and anisotropy of high temperature thermoelectric properties of yttrium borosilicide single crystals. Journal of Solid State Chemistry, 2016, 233, 1-7.	2.9	18
169	Origin of Projected Excellent Thermoelectric Transport Properties in d ⁰ â€Electron AMN ₂ (A = Sr or Ba; M = Ti, Zr, Hf) Layered Complex Metal Nitrides. European Journal of Inorganic Chemistry, 2015, 2015, 3715-3722.	2.0	12
170	Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by <i>in situ</i> TEM. Nanotechnology, 2015, 26, 465705.	2.6	6
171	Thermoelectricity Generation and Electron–Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep‣ea Hydrothermal Vent. Angewandte Chemie - International Edition, 2015, 54, 12909-12913.	13.8	156
172	Enhanced thermoelectric properties of samarium boride. Journal of Materiomics, 2015, 1, 196-204.	5.7	52
173	Enhanced thermoelectric performance of porous magnesium tin silicide prepared using pressure-less spark plasma sintering. Journal of Materials Chemistry A, 2015, 3, 17426-17432.	10.3	84
174	Anisotropic Anomalies of Thermoelectric Transport Properties and Electronic Structures in Layered Complex Nitrides AMN ₂ (A = Na, Cu; M = Ta, Nb). Chemistry of Materials, 2015, 27, 7265-7275.	6.7	30
175	YB48 the metal rich boundary of YB66; crystal growth and thermoelectric properties. Journal of Physics and Chemistry of Solids, 2015, 87, 221-227.	4.0	19
176	Interface engineering of bio-inspired Boron nitride nano-architectures toward controllable hydrophobicity/hydrophilicity. , 2015, , .		1
177	Cold Spraying of Amorphous Cu50Zr50 Alloys. Journal of Thermal Spray Technology, 2014, 24, 108.	3.1	10
178	Theoretical and experimental investigation of the excellent p–n control in yttrium aluminoborides. Science and Technology of Advanced Materials, 2014, 15, 035012.	6.1	14
179	Influence of Pressure on Superconductivity in YB_{6}. Acta Physica Polonica A, 2014, 126, 340-341.	0.5	1
180	High-pressure effect on the superconductivity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal">YB <mml:mn> 6 </mml:mn> </mml:mi </mml:msub> . Physical Review B, 2014, 90, .</mml:math 	3.2	23

#	Article	IF	CITATIONS
181	SPS-sintered NaTaO3–Fe2O3 composite exhibits enhanced Seebeck coefficient and electric current. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	3.6	5
182	Thermal conductivity of layered borides: The effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2. APL Materials, 2014, 2, .	5.1	32
183	The origin of the n-type behavior in rare earth borocarbide Y _{1â^'x} B _{28.5} C ₄ . Dalton Transactions, 2014, 43, 15048-15054.	3.3	26
184	Two-Dimensional Layered Complex Nitrides as a New Class of Thermoelectric Materials. Chemistry of Materials, 2014, 26, 2532-2536.	6.7	39
185	Three-Dimensionality of Electronic Structures and Thermoelectric Transport in SrZrN2 and SrHfN2 Layered Complex Metal Nitrides. Inorganic Chemistry, 2014, 53, 8979-8984.	4.0	15
186	HAXPES study of CeO thin film–silicon oxide interface. Applied Surface Science, 2014, 303, 46-53.	6.1	15
187	Phase Stability and Thermoelectric Properties of CuFeS2-Based Magnetic Semiconductor. Journal of Electronic Materials, 2014, 43, 2371-2375.	2.2	55
188	Intergrowth structure of α-phase in β-type TmAlB4 compound studied by high-angle annular detector dark-field scanning transmission electron microscopy. Journal of Solid State Chemistry, 2014, 219, 274-279.	2.9	6
189	Synthesis and thermoelectric behaviour of copper telluride nanosheets. Journal of Materials Chemistry A, 2014, 2, 985-990.	10.3	88
190	Stability and Thermoelectric Property of Cu ₉ Fe ₉ S ₁₆ : Sulfide Mineral as a Promising Thermoelectric Material. Materials Research Society Symposia Proceedings, 2014, 1680, 1.	0.1	5
191	Anomalous effect of vanadium boride seeding on thermoelectric properties of YB22C2N. Materials Research Bulletin, 2013, 48, 1972-1977.	5.2	23
192	Ultra low thermal conductivity of disordered layered p-type bismuth telluride. Journal of Materials Chemistry C, 2013, 1, 2362.	5.5	35
193	High-resolution electron microscopy and X-ray diffraction study of intergrowth structures in α- and β-type YbAlB ₄ single crystals. Philosophical Magazine, 2013, 93, 1054-1064.	1.6	11
194	High Thermoelectric Power Factor in a Carrier-Doped Magnetic Semiconductor CuFeS ₂ . Applied Physics Express, 2013, 6, 043001.	2.4	161
195	Strong magnetic coupling in a magnetically dilute f-electron insulator: A dysprosium boron-cluster compound. Journal of Applied Physics, 2013, 113, 17E156.	2.5	5
196	Excellent p-n control in a high temperature thermoelectric boride. Applied Physics Letters, 2012, 101, .	3.3	44
197	Direct elucidation of the effect of building defects on the physical properties of alpha-TmAlB4; An AlB2-type analogous "tiling―compound. Journal of Applied Physics, 2012, 111, 07E127.	2.5	13
198	Electrical, optical, and thermoelectric properties of Ga2O3(ZnO)9. RSC Advances, 2011, 1, 1788.	3.6	31

#	Article	IF	CITATIONS
199	Effect of Transition-Metal Additives on Thermoelectric Properties of YB22C2N. Journal of Electronic Materials, 2011, 40, 920-925.	2.2	17
200	f-electron dependence of the physical properties of REAlB4; an AlB2-type analogous "tiling―compound. Journal of Applied Physics, 2011, 109, 07E111.	2.5	12
201	Pt and Sn Doped Sputtered CeO ₂ Electrodes for Fuel Cell Applications. Fuel Cells, 2010, 10, 139-144.	2.4	14
202	Inside Cover: Bulk and Surface Structure and Highâ€Temperature Thermoelectric Properties of Inverse Clathrateâ€II in the Siâ€Pâ€Te System (Chem. Eur. J. 42/2010). Chemistry - A European Journal, 2010, 16, 12494-12494.	3.3	0
203	Thermoelectric properties and spark plasma sintering of doped YB ₂₂ C ₂ N. Journal of Materials Research, 2010, 25, 665-669.	2.6	24
204	Effect of Zn doping on improving crystal quality and thermoelectric properties of borosilicides. Dalton Transactions, 2010, 39, 1027-1030.	3.3	34
205	Strong-Coupling Features in YB ₆ and ZrB ₁₂ Studied by Point-Contact Spectroscopy. Acta Physica Polonica A, 2010, 118, 1042-1044.	0.5	3
206	Magnetic Ordering in Boron-Rich Borides TbB ₆₆ and GdB ₆₆ . Acta Physica Polonica A, 2010, 118, 875-876.	0.5	16
207	Magnetic properties of the thulium layered compound Tm2AlB116: An AlB2-type analogue. Journal of Applied Physics, 2009, 105, 07E124.	2.5	7
208	Topology and symmetry analysis of rare earth borocarbides structural family, analogy to hexaferrites and relation to properties. Crystal Research and Technology, 2009, 44, 19-24.	1.3	7
209	Doping Effects in Rare-Earth Borides. Journal of Electronic Materials, 2009, 38, 1098-1103.	2.2	8
210	Ferromagnetism and electronic structure of TmB2. Physical Review B, 2009, 79, .	3.2	34
211	Crystal Structure of Ce ₃ Ni ₂ (BN) ₂ N and Magnetic Behavior of (CeNi(BN)) ₂ (CeN) _x with x = 0, 1. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 1067-1070.	1.2	6
212	Higher Borides. Fundamental Theories of Physics, 2008, , 105-173.	0.3	42
213	Synthesis and magnetic properties of the ThMoB4-type modification of ErAlB4. Journal of Applied Physics, 2008, 103, 07B730.	2.5	7
214	Magnetism of Higher Borides. Acta Physica Polonica A, 2008, 113, 231-234.	0.5	0
215	Thermal conductivity of YbB44Si2. Journal of Applied Physics, 2007, 102, 073510.	2.5	46
216	Crystal structure, chemical bonding, electrical transport, and magnetic behavior ofTmAlB4. Physical Review B, 2007, 76, .	3.2	46

#	Article	IF	CITATIONS
217	Influence of micro-structure in doped CeO2 solid electrolytes on conducting properties. Microscopy and Microanalysis, 2007, 13, .	0.4	1
218	High temperature thermoelectric properties of a homologous series of n-type boron icosahedra compounds: A possible counterpart to p-type boron carbide. Journal of Applied Physics, 2007, 101, 093714.	2.5	67
219	Low Temperature Properties and Superconductivity of YB6 and YB4. AIP Conference Proceedings, 2006, , .	0.4	3
220	Effect of transition metal doping and carbon doping on thermoelectric properties of YB66 single crystals. Journal of Solid State Chemistry, 2006, 179, 2889-2894.	2.9	36
221	Thermoelectric properties of homologous p- and n-type boron-rich borides. Journal of Solid State Chemistry, 2006, 179, 2908-2915.	2.9	90
222	Electron-spin-resonance study of gadolinium borosilicide: A rare-earth ladder compound. Journal of Applied Physics, 2006, 99, 08J309.	2.5	14
223	Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials, 2005, 17, 1648-1652.	21.0	512
224	Magnetic properties of thulium aluminoboride TmAlB4. Journal of Applied Physics, 2005, 97, 10A910.	2.5	23
225	Thermal Conductivity and Thermoelectric Properties of Novel Rare Earth Boron-Rich Cluster Compounds; Discovery of first undoped n-type B12 icosahedral compound. Materials Research Society Symposia Proceedings, 2005, 886, 1.	0.1	0
226	High temperature thermoelectric properties of B12 icosahedral cluster-containing rare earth boride crystals. Journal of Applied Physics, 2005, 97, 093703.	2.5	51
227	Doping effect in a magnetic TbB50-type B12 cluster compound. Journal of Applied Physics, 2004, 95, 7204-7206.	2.5	34
228	Synthesis and Properties of [B/C] Layered Compounds Materials Research Society Symposia Proceedings, 2004, 848, 270.	0.1	0
229	Physical properties of layered homologous RE–B–C(N) compounds. Journal of Solid State Chemistry, 2004, 177, 444-448.	2.9	15
230	Investigation of the magnetic structure of a TbB50-type B12 cluster compound. Journal of Alloys and Compounds, 2004, 374, 105-107.	5.5	7
231	RMn2Si2 (R=La, Ce, Pr, Nd, Sm, Gd) Compounds Grown from Metal Flux and Properties of the Crystals. Journal of the Ceramic Society of Japan, 2004, 112, 263-265.	1.3	0
232	Direct Pyrolysis Method for Superconducting Crystalline MgB2 Nanowires. Chemistry of Materials, 2003, 15, 3194-3197.	6.7	20
233	Dynamical properties of a crystalline rare-earth boron cluster spin-glass system. Physical Review B, 2003, 68, .	3.2	81
234	Magnetism of the trigonal B12 cluster compound REB17CN (RE=Er, Ho). Journal of Applied Physics, 2003, 93, 7664-7666.	2.5	17

#	Article	IF	CITATIONS
235	Low-temperature magnetism of the compound GdB18Si5. Journal of Physics Condensed Matter, 2002, 14, 11831-11836.	1.8	17
236	Magnetism of CaB2C2. Journal of the Physical Society of Japan, 2002, 71, 1789-1790.	1.6	22
237	Investigation of Superconductivity in Isoelectronic and Related Compounds of MgB2. Journal of the Physical Society of Japan, 2002, 71, 323-325.	1.6	3
238	Crystal Structure and Properties of Novel Quaternary Actinoid Boron Carbides U2ScB6C3 and Th2ScB6C3. Journal of Nuclear Science and Technology, 2002, 39, 122-125.	1.3	3
239	Spin glass behavior in rhombohedralB12cluster compounds. Physical Review B, 2002, 66, .	3.2	45
240	Homologous Phases Built by Boron Clusters and Their Vibrational Properties. Inorganic Chemistry, 2001, 40, 6948-6951.	4.0	12
241	Realization of the YB50 structure type in the gadolinium borides. Materials Research Bulletin, 2001, 36, 2463-2470.	5.2	16
242	Synthesis and magnetic properties of binary boride REB25compounds. Journal of Physics Condensed Matter, 2001, 13, L423-L430.	1.8	27
243	Effect of Transition Metal Doping in YB66. Journal of Solid State Chemistry, 2000, 154, 54-60.	2.9	9
244	Specific Heat of Antiferromagnetic-like TbB41Si1.2, a B12 Icosahedral Boron-Rich Compound. Journal of Solid State Chemistry, 2000, 154, 223-228.	2.9	12
245	Magnetic Transitions in B12Icosahedral Cluster Compounds REB50(RE=Tb, Dy, Ho, Er). Journal of the Physical Society of Japan, 2000, 69, 579-585.	1.6	33
246	Magnetic Properties of Terbium B12Icosahedral Boron-Rich Compounds. Journal of the Physical Society of Japan, 1999, 68, 2033-2039.	1.6	71
247	Magnetic transitions in B12 icosahedral boron-rich compounds TbB50 and TbB41Si1.2: Lattice constant dependence of the transition. Journal of Alloys and Compounds, 1999, 288, 32-35.	5.5	28
248	Development of high quality Pt-CeO>inf<2>/inf <based ,="" .<="" 0,="" anode="" applications.="" cell="" direct="" for="" fuel="" materials="" methanol="" td=""><td></td><td>0</td></based>		0
249	Feasibility of high performance in p â€ŧype Ge 1â^' x Bi x Te materials for thermoelectric modules. Journal of the American Ceramic Society, 0, , .	3.8	6
250	Insight of the preponderant role of the lattice size in the Sn-based colusite for promoting high power factor. Journal of Materials Chemistry A, 0, , .	10.3	5
251	Preparation of mesoporous nitrogen-doped titania comprising large crystallites with low thermal conductivity. Nanoscale Advances, 0, , .	4.6	0
252	First principles study of Fe ₂ VAl and Fe ₂ VAl/Si thin films and their magnetic properties. Japanese Journal of Applied Physics, 0, , .	1.5	1

#	Article	IF	CITATIONS
253	Thermoelectric properties of Cuâ€Doped Heusler compound Fe _{2―<i>x</i>} Cu _{<i>x</i>} VAl. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	0