Adam J Bergren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/84651/publications.pdf

Version: 2024-02-01

41 papers 1,855 citations

361413 20 h-index 345221 36 g-index

44 all docs

44 docs citations

44 times ranked 2022 citing authors

#	Article	IF	CITATIONS
1	Progress with Molecular Electronic Junctions: Meeting Experimental Challenges in Design and Fabrication. Advanced Materials, 2009, 21, 4303-4322.	21.0	344
2	Bench-Top Method for Fabricating Glass-Sealed Nanodisk Electrodes, Glass Nanopore Electrodes, and Glass Nanopore Membranes of Controlled Size. Analytical Chemistry, 2007, 79, 4778-4787.	6.5	250
3	Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5326-5330.	7.1	149
4	Charge transport in molecular electronic junctions: Compression of the molecular tunnel barrier in the strong coupling regime. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11498-11503.	7.1	142
5	A critical perspective on molecular electronic junctions: there is plenty of room in the middle. Physical Chemistry Chemical Physics, 2013, 15, 1065-1081.	2.8	136
6	All-Carbon Molecular Tunnel Junctions. Journal of the American Chemical Society, 2011, 133, 19168-19177.	13.7	101
7	Electronic Characteristics and Charge Transport Mechanisms for Large Area Aromatic Molecular Junctions. Journal of Physical Chemistry C, 2010, 114, 15806-15815.	3.1	83
8	Optical Interference Effects in the Design of Substrates for Surface-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2009, 63, 133-140.	2.2	61
9	Musical molecules: the molecular junction as an active component in audio distortion circuits. Journal of Physics Condensed Matter, 2016, 28, 094011.	1.8	50
10	Direct Optical Determination of Interfacial Transport Barriers in Molecular Tunnel Junctions. Journal of the American Chemical Society, 2013, 135, 9584-9587.	13.7	44
11	Derivatization of Optically Transparent Materials with Diazonium Reagents for Spectroscopy of Buried Interfaces. Analytical Chemistry, 2009, 81, 6972-6980.	6.5	36
12	Internal Photoemission in Molecular Junctions: Parameters for Interfacial Barrier Determinations. Journal of the American Chemical Society, 2015, 137, 1296-1304.	13.7	34
13	Ultravioletâ€"Visible Spectroelectrochemistry of Chemisorbed Molecular Layers on Optically Transparent Carbon Electrodes. Applied Spectroscopy, 2007, 61, 1246-1253.	2.2	33
14	Towards Integrated Molecular Electronic Devices: Characterization of Molecular Layer Integrity During Fabrication Processes. Advanced Functional Materials, 2011, 21, 2273-2281.	14.9	32
15	Molecular electronics using diazonium-derived adlayers on carbon with Cu top contacts: critical analysis of metal oxides and filaments. Journal of Physics Condensed Matter, 2008, 20, 374117.	1.8	31
16	Analytical Chemistry in Molecular Electronics. Annual Review of Analytical Chemistry, 2011, 4, 173-195.	5 . 4	31
17	Solid-State Protein Junctions: Cross-Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling. IScience, 2020, 23, 101099.	4.1	30
18	Light Emission as a Probe of Energy Losses in Molecular Junctions. Journal of the American Chemical Society, 2016, 138, 722-725.	13.7	29

#	Article	IF	CITATIONS
19	Electron transport in all-carbon molecular electronic devices. Faraday Discussions, 2014, 172, 9-25.	3.2	26
20	Chemically Modified Electrodes., 2007,, 295-327.		25
21	Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6090-6095.	8.0	23
22	Electron-beam evaporated silicon as a top contact for molecular electronic device fabrication. Physical Chemistry Chemical Physics, 2011, 13, 14318.	2.8	20
23	Monitoring of Energy Conservation and Losses in Molecular Junctions through Characterization of Light Emission. Advanced Electronic Materials, 2016, 2, 1600351.	5.1	19
24	Selectivity mechanisms at self-assembled monolayers on gold: Implications in redox recycling amplification systems. Journal of Electroanalytical Chemistry, 2007, 599, 12-22.	3.8	17
25	Large Builtâ€In Fields Control the Electronic Properties of Nanoscale Molecular Devices with Dipolar Structures. Advanced Electronic Materials, 2018, 4, 1700656.	5.1	16
26	Metal–Organic Framework with Color-Switching and Strongly Polarized Emission. Chemistry of Materials, 2019, 31, 5816-5823.	6.7	16
27	Electrochemical amplification using selective self-assembled alkanethiolate monolayers on gold: A predictive mechanistic model. Journal of Electroanalytical Chemistry, 2005, 585, 172-180.	3.8	14
28	The characteristics of selective heterogeneous electron transfer for optimization of redox recycling amplification systems. Journal of Electroanalytical Chemistry, 2006, 591, 189-200.	3.8	11
29	Importance of reactant mass transfer in the reproducible preparation of self-assembled monolayers. Journal of Electroanalytical Chemistry, 2008, 622, 193-203.	3.8	9
30	Surface Functionalization in the Nanoscale Domain. , 2012, , 163-190.		9
31	Extent of conjugation in diazonium-derived layers in molecular junction devices determined by experiment and modelling. Physical Chemistry Chemical Physics, 2019, 21, 16762-16770.	2.8	8
32	Visible light emission in graphene field effect transistors. Nano Futures, 2017, 1, 025004.	2.2	6
33	Improvement of sugar-chlorate rocket demonstration. Journal of Chemical Education, 2000, 77, 1581.	2.3	3
34	Interpretation of molecular device transport calculations. Canadian Journal of Chemistry, 2016, 94, 1022-1027.	1.1	3
35	On the Counterâ€intuitive Heterogeneous Electron Transfer Barrier Properties of Alkanethiolate Monolayers on Gold: Smooth versus Rough Surfaces. Electroanalysis, 2022, 34, 1936-1952.	2.9	3
36	Graphenic Nanocomposite Barrier Films. MRS Advances, 2017, 2, 33-38.	0.9	2

#	Article	IF	CITATIONS
37	Reply to the †Comment on †Extent of conjugation in diazonium-derived layers in molecular junction devices determined by experiment and modelling†€ ™ by R. L. McCreery, S. K. Saxena, M. Supur and U. Tefashe, Phys. Chem. Chem. Phys., 2020, 22, DOI: 10.1039/d0cp02412k. Physical Chemistry Chemical Physics, 2020, 22, 21547-21549.	2.8	2
38	Molecules in Circuits: A New Type of Microelectronics?. ECS Transactions, 2014, 61, 113-121.	0.5	0
39	Impact of Contact in Molecular Junctions: When Physics Dictates the Chemical Properties. ECS Meeting Abstracts, 2018, , .	0.0	0
40	Charge Transport and Practical Applications of All-Carbon Molecular Electronic Devices. ECS Meeting Abstracts, $2018, \ldots$	0.0	0
41	(Invited) Fabrication and Characterization of Carbon-Based Nanoscale Devices: Insights and Applications. ECS Meeting Abstracts, 2018 , , .	0.0	0