Lok Kumar Shrestha

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8464461/lok-kumar-shrestha-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36,144 169 515 99 h-index g-index citations papers 7.6 7.96 534 39,351 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
515	Self-assembly Enabling Materials Nanoarchitectonics 2022 , 87-107		1
514	The Past and the Future of Langmuir and Langmuir-Blodgett Films Chemical Reviews, 2022,	68.1	19
513	Self-Assembled Corn-Husk-Shaped Fullerene Crystals as Excellent Acid Vapor Sensors. <i>Chemosensors</i> , 2022 , 10, 16	4	3
512	Nanoarchitectonics. Nanostructure Science and Technology, 2022, 35-44	0.9	
511	Mechano-Nanoarchitectonics: Design and Function Small Methods, 2022, e2101577	12.8	2
510	Bio-interactive nanoarchitectonics with two-dimensional materials and environments <i>Science and Technology of Advanced Materials</i> , 2022 , 23, 199-224	7.1	2
509	High Surface Area Nanoporous Activated Carbons Materials from Areca catechu Nut with Excellent Iodine and Methylene Blue Adsorption. <i>Journal of Carbon Research</i> , 2022 , 8, 2	3.3	2
508	Fullerene Rosette: Two-Dimensional Interactive Nanoarchitectonics and Selective Vapor Sensing. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 5454	6.3	3
507	There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices <i>Physical Chemistry Chemical Physics</i> , 2021 ,	3.6	12
506	Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?. <i>Advanced Materials</i> , 2021 , e2107212	24	10
505	Carbon Nanoarchitectonics for Energy and Related Applications. <i>Journal of Carbon Research</i> , 2021 , 7, 73	3.3	2
504	Solvothermally synthesized anatase TiO2 nanoparticles for photoanodes in dye-sensitized solar cells. <i>Science and Technology of Advanced Materials</i> , 2021 , 22, 100-112	7.1	3
503	Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. <i>Molecules</i> , 2021 , 26,	4.8	6
502	Nanoarchitectonics at Interfaces for Regulations of Biorelated Phenomena: Small Structures with Big Effects. <i>Small Structures</i> , 2021 , 2, 2100006	8.7	4
501	Nanoarchitectonics Can Save Our Planet: Nanoarchitectonics for Energy and Environment. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2021 , 31, 2243-2244	3.2	1
500	Monitoring the Release of Silver from a Supramolecular Fullerene C60-AgNO3 Nanomaterial. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 1347-1354	5.1	4
499	Nanoarchitectonics for fullerene biology. <i>Applied Materials Today</i> , 2021 , 23, 100989	6.6	12

(2021-2021)

498	Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene. <i>Molecules</i> , 2021 , 26,	4.8	4
497	Atomic Nanoarchitectonics for Catalysis. Advanced Materials Interfaces, 2021, 8, 2001395	4.6	8
496	Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. <i>Small Science</i> , 2021 , 1, 2000032		31
495	Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. <i>Microporous and Mesoporous Materials</i> , 2021 , 312, 110757	5.3	20
494	Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 839-859	5.1	38
493	Zero-to-one (or more) nanoarchitectonics: how to produce functional materials from zero-dimensional single-element unit, fullerene. <i>Materials Advances</i> , 2021 , 2, 582-597	3.3	15
492	Life science nanoarchitectonics at interfaces. Materials Chemistry Frontiers, 2021, 5, 1018-1032	7.8	9
491	Nanoarchitectonics on living cells RSC Advances, 2021 , 11, 18898-18914	3.7	12
490	Development of MOF Reinforcement for Structural Stability and Toughness Enhancement of Biodegradable Bioinks. <i>Biomacromolecules</i> , 2021 , 22, 1053-1064	6.9	3
489	Nanoarchitectonics: what's coming next after nanotechnology?. <i>Nanoscale Horizons</i> , 2021 , 6, 364-378	10.8	73
489 488	Nanoarchitectonics: what's coming next after nanotechnology?. <i>Nanoscale Horizons</i> , 2021 , 6, 364-378 Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 565-572	10.8	73
, ,	Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance		
488	Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 565-572 Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor	5.1	4
488	Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 565-572 Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor Coated with Copper(I) Complex. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 648-654 Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach. <i>Journal of Inorganic and Organometallic Polymers and</i>	5.1	7
488 487 486	Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 565-572 Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor Coated with Copper(I) Complex. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 648-654 Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2021 , 31, 1946-1953 Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into	5.1 5.1 3.2	473
488 487 486 485	Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 565-572 Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor Coated with Copper(I) Complex. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 648-654 Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2021 , 31, 1946-1953 Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. <i>Materials Today Chemistry</i> , 2021 , 21, 100534	5.1 5.1 3.2 6.2	4 7 3
488 487 486 485 484	Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 565-572 Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor Coated with Copper(I) Complex. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 648-654 Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2021 , 31, 1946-1953 Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. <i>Materials Today Chemistry</i> , 2021 , 21, 100534 Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. <i>Nanomaterials</i> , 2021 , 11,	5.1 5.1 3.2 6.2	4 7 3 1

480	Interfacial nanoarchitectonics for responsive cellular biosystems. <i>Materials Today Bio</i> , 2020 , 8, 100075	9.9	10
479	Nanoarchitectonics of Lotus Seed Derived Nanoporous Carbon Materials for Supercapacitor Applications. <i>Materials</i> , 2020 , 13,	3.5	5
478	Hydrotalcite-Supported Ag/Pd Bimetallic Nanoclusters Catalyzed Oxidation and One-Pot Aldol Reaction in Water. <i>Catalysts</i> , 2020 , 10, 1120	4	1
477	Fullerene Nanoarchitectonics with Shape-Shifting. <i>Materials</i> , 2020 , 13,	3.5	11
476	Don't Forget Langmuir-Blodgett Films 2020: Interfacial Nanoarchitectonics with Molecules, Materials, and Living Objects. <i>Langmuir</i> , 2020 , 36, 7158-7180	4	76
475	Electron and energy transfer in a porphyrin-oxoporphyrinogen-fullerene triad, ZnP-OxP-C. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 14356-14363	3.6	2
474	Supramolecular Chiral Nanoarchitectonics. <i>Advanced Materials</i> , 2020 , 32, e1905657	24	76
473	2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. <i>Chemistry - A European Journal</i> , 2020 , 26, 6461-6472	4.8	23
472	Nanomechanical Recognition and Discrimination of Volatile Molecules by Au Nanocages Deposited on Membrane-Type Surface Stress Sensors. <i>ACS Applied Nano Materials</i> , 2020 , 3, 4061-4068	5.6	6
47 ¹	Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15424-15446	16.4	78
470	Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes. <i>Chemical Science</i> , 2020 , 11, 2614-2620	9.4	3
469	Nanoarchitektonik als ein Ansatz zur Erzeugung biofinlicher hierarchischer Organisate. <i>Angewandte Chemie</i> , 2020 , 132, 15550-15574	3.6	7
468	Large-Area Aligned Fullerene Nanocrystal Scaffolds as Culture Substrates for Enhancing Mesenchymal Stem Cell Self-Renewal and Multipotency. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6497-650	6 ^{5.6}	27
467	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. <i>Bulletin of the Chemical Society of Japan</i> , 2020 , 93, 581-603	5.1	54
466	Soft Nanoarchitectonics for Enantioselective Biosensing. Accounts of Chemical Research, 2020, 53, 644-6	6 53 .3	37
465	Vortex-Aligned Ordered Film of Crystalline Fullerene C Microtubes with Enhanced Photoluminescence and Photovoltaics Properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 2971-2978	1.3	6
464	Intelligent Nanoarchitectonics for Self-Assembling Systems. <i>Advanced Intelligent Systems</i> , 2020 , 2, 1900)1557	8
463	Nanoarchitectonics from Atom to Life. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 718	4.5	40

(2020-2020)

462	Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. Nanomaterials, 2020 , 10,	5.4	26
461	Molecular Tuning Nanoarchitectonics for Molecular Recognition and Molecular Manipulation. <i>ChemNanoMat</i> , 2020 , 6, 870-880	3.5	19
460	Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance. <i>Materials</i> , 2020 , 13,	3.5	11
459	Nano-architectonics for coordination assemblies at interfacial media. <i>Advances in Inorganic Chemistry</i> , 2020 , 76, 239-268	2.1	1
458	100 °C-Langmuir-Blodgett Method for Fabricating Highly Oriented, Ultrathin Films of Polymeric Semiconductors. <i>ACS Applied Materials & Description</i> (2008) 12, 56522-56529	9.5	21
457	Emission Control by Molecular Manipulation of Double-Paddled Binuclear Pt Complexes at the Air-Water Interface. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 406-414	4.5	19
456	Engineered functionalized 2D nanoarchitectures for stimuli-responsive drug delivery. <i>Materials Horizons</i> , 2020 , 7, 455-469	14.4	43
455	Post-assembly dimension-dependent face-selective etching of fullerene crystals. <i>Materials Horizons</i> , 2020 , 7, 787-795	14.4	21
454	Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate. <i>Advanced Materials</i> , 2020 , 32, e1905942	24	48
453	Molecular Engineering of Ebubstituted Oxoporphyrinogens for Hydrogen-Bond Donor Catalysis. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 82-90	3.2	8
452	1D materials from ionic self-assembly in mixtures containing chromonic liquid crystal mesogens. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 23276-23285	3.6	1
451	The evolution of molecular machines through interfacial nanoarchitectonics: from toys to tools. <i>Chemical Science</i> , 2020 , 11, 10594-10604	9.4	30
450	Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. <i>Journal of Carbon Research</i> , 2020 , 6, 73	3.3	4
449	Molecular recognition at the air-water interface: nanoarchitectonic design and physicochemical understanding. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 24856-24869	3.6	17
448	Atomic and Organic Nanoarchitectonics. <i>Trends in Chemistry</i> , 2020 , 2, 779-782	14.8	9
447	Methods with Nanoarchitectonics for Small Molecules and Nanostructures to Regulate Living Cells. <i>Small Methods</i> , 2020 , 4, 2000500	12.8	17
446	Nanoarchitectonics for Nanocarbon Assembly and Composite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2020 , 30, 42-55	3.2	12
445	High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. <i>Nanomaterials</i> , 2020 , 10,	5.4	17

444	Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation. <i>Current Opinion in Colloid and Interface Science</i> , 2019 , 44, 1-13	7.6	14
443	Soft material nanoarchitectonics at interfaces: molecular assembly, nanomaterial synthesis, and life control. <i>Molecular Systems Design and Engineering</i> , 2019 , 4, 49-64	4.6	28
442	Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. <i>ACS Nano</i> , 2019 , 13, 2410-2419	16.7	29
441	Layer-by-Layer Assembly: Recent Progress from Layered Assemblies to Layered Nanoarchitectonics. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2553-2566	4.5	85
440	Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells. <i>Applied Surface Science</i> , 2019 , 487, 211-217	6.7	22
439	Materials Nanoarchitectonics as Cell Regulators. <i>ChemNanoMat</i> , 2019 , 5, 692-702	3.5	44
438	Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12654-12660	13	54
437	Microwires of Au-Ag Nanocages Patterned via Magnetic Nanoadhesives for Investigating Proteins using Surface Enhanced Infrared Absorption Spectroscopy. <i>ACS Applied Materials & Discrete Solution</i> , 11, 18053-18061	9.5	10
436	Self-assembly as a key player for materials nanoarchitectonics. <i>Science and Technology of Advanced Materials</i> , 2019 , 20, 51-95	7.1	204
435	Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. <i>Microporous and Mesoporous Materials</i> , 2019 , 274, 251-256	5.3	38
434	Langmuir Nanoarchitectonics from Basic to Frontier. <i>Langmuir</i> , 2019 , 35, 3585-3599	4	90
433	Electrochemical Behavior of Cytochrome C Immobilized in a Magnetically Induced Mesoporous Framework. <i>ChemElectroChem</i> , 2019 , 6, 5802-5809	4.3	4
432	Materials nanoarchitectonics at two-dimensional liquid interfaces. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 1559-1587	3	25
431	Atom/molecular nanoarchitectonics for devices and related applications. <i>Nano Today</i> , 2019 , 28, 100762	17.9	55
430	Nanoarchitectonics to prepare practically useful artificial enzymes. <i>Molecular Catalysis</i> , 2019 , 475, 1104	19323	29
429	Monitoring Fluorescence Response of Amphiphilic Flapping Molecules in Compressed Monolayers at the Air-Water Interface. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2869-2876	4.5	25
428	Structural-Size Control of Domain from Nano to Micro: Logical Balancing between Attractive and Repulsive Interactions in Two Dimensions. <i>Langmuir</i> , 2019 , 35, 10383-10389	4	8
427	Review of advanced sensor devices employing nanoarchitectonics concepts. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 2014-2030	3	31

(2018-2019)

426	Ratiometric immunoassays built from synergistic photonic absorption of size-diverse semiconducting MoS2 nanostructures. <i>Materials Horizons</i> , 2019 , 6, 563-570	14.4	34
425	Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. <i>Journal of Carbon Research</i> , 2019 , 5, 10	3.3	20
424	Multimodal switching of a redox-active macrocycle. <i>Nature Communications</i> , 2019 , 10, 1007	17.4	13
423	Supramolecular nanoarchitectonics for functional materials. <i>APL Materials</i> , 2019 , 7, 120903	5.7	12
422	Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns Having Microscopic Recognition Properties. <i>ACS Nano</i> , 2019 , 13, 14005-14012	16.7	26
421	Nanoarchitectonic-Based Material Platforms for Environmental and Bioprocessing Applications. <i>Chemical Record</i> , 2019 , 19, 1891-1912	6.6	14
420	Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced Electrochemical Supercapacitance. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 521-528	5.1	65
419	Unidirectional Branching Growth of Dipeptide Single Crystals for Remote Light Multiplication and Collection. <i>ACS Applied Materials & Dipeptide Single Crystals</i> , 11, 31-36	9.5	10
418	Enhanced Activity of Alcohol Dehydrogenase in Porous Silica Nanosheets with Wide Size Distributed Mesopores. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 275-282	5.1	13
417	Optogenetic Modulation and Reprogramming of Bacteriorhodopsin-Transfected Human Fibroblasts on Self-Assembled Fullerene C60 Nanosheets. <i>Advanced Biology</i> , 2019 , 3, e1800254	3.5	12
416	Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. Sensors, 2019, 19,	3.8	31
415	Modulation of Mesenchymal Stem Cells Mechanosensing at Fluid Interfaces by Tailored Self-Assembled Protein Monolayers. <i>Small</i> , 2019 , 15, e1804640	11	44
414	BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. <i>Journal of Solid State Chemistry</i> , 2019 , 269, 409-418	3.3	28
413	Vanadium sulfide/reduced graphene oxide composite with enhanced supercapacitance performance. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2018 , 92, 72-79	5.3	21
412	Soft 2D nanoarchitectonics. NPG Asia Materials, 2018, 10, 90-106	10.3	105
411	Nano Trek Beyond: Driving Nanocars/Molecular Machines at Interfaces. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 1266-1278	4.5	38
410	Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic. <i>Carbon</i> , 2018 , 134, 334-344	10.4	6
409	Junction-Controlled Topological Polymerization. <i>Angewandte Chemie</i> , 2018 , 130, 5030-5033	3.6	5

408	Dynamic nanoarchitectonics: Supramolecular polymorphism and differentiation, shape-shifter and hand-operating nanotechnology. <i>Current Opinion in Colloid and Interface Science</i> , 2018 , 35, 68-80	7.6	22
407	Mesoporous fullerene C70 cubes with highly crystalline frameworks and unusually enhanced photoluminescence properties. <i>Materials Horizons</i> , 2018 , 5, 285-290	14.4	46
406	Nanoarchitectonics from Molecular Units to Living-Creature-Like Motifs. <i>Chemical Record</i> , 2018 , 18, 676	- 6 §5	31
405	Nanoarchitectonics Approach for Sensing 2018 , 255-263		1
404	Change Thinking toward Nanoarchitectonics 2018 , 1-6		1
403	Junction-Controlled Topological Polymerization. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4936-4939	16.4	17
402	Fluoride-ion-binding promoted photoinduced charge separation in a self-assembled C alkyl cation bound bis-crown ether-oxoporphyrinogen supramolecule. <i>Chemical Communications</i> , 2018 , 54, 1351-135	5 4 :8	8
401	Enhanced Adsorption Selectivity of Aromatic Vapors in Carbon Capsule Film by Control of Surface Surfactants on Carbon Capsule. <i>Bulletin of the Chemical Society of Japan</i> , 2018 , 91, 391-397	5.1	27
400	Highly active and reusable hydrotalcite-supported Pd(0) catalyst for Suzuki coupling reactions of aryl bromides and chlorides. <i>Tetrahedron</i> , 2018 , 74, 948-954	2.4	15
399	Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. <i>Bulletin of the Chemical Society of Japan</i> , 2018 , 91, 1075-1111	5.1	165
398	Molecular rotors confined at an ordered 2D interface. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 307	′3 . 807	835
397	Molybdenum Adsorption Properties of Alumina-Embedded Mesoporous Silica for Medical Radioisotope Production. <i>Bulletin of the Chemical Society of Japan</i> , 2018 , 91, 195-200	5.1	37
396	Defect-free exfoliation of graphene at ultra-high temperature. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 538, 127-132	5.1	24
395	Mechanical Tuning of Through-Molecule Conductance in a Conjugated Calix[4]pyrrole. <i>ChemistrySelect</i> , 2018 , 3, 6473-6478	1.8	15
394	Graphene composites with dental and biomedical applicability. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 801-808	3	18
393	Demonstration of Reentrant Relaxor Ferroelectric Phase Transitions in Antiferroelectric-Based (Pb0.50Ba0.50)ZrO3 Ceramics. <i>Energies</i> , 2018 , 11, 850	3.1	
392	Carbon Nanosheets by Morphology-Retained Carbonization of Two-Dimensional Assembled Anisotropic Carbon Nanorings. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9679-9683	16.4	63
391	Hierarchically Structured Functional Materials: Mesoporous Materials, Layer-by-Layer Films, and Self-Assembled Structures. <i>Journal of the Japan Society of Colour Material</i> , 2018 , 91, 310-315	0	

(2017-2018)

390	High surface area nanoporous carbon derived from high quality jute from Bangladesh. <i>Materials Chemistry and Physics</i> , 2018 , 216, 491-495	4.4	18
389	Carbon Nanosheets by Morphology-Retained Carbonization of Two-Dimensional Assembled Anisotropic Carbon Nanorings. <i>Angewandte Chemie</i> , 2018 , 130, 9827-9831	3.6	15
388	Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 3366-3377	4.5	34
387	Demonstration of a Novel Charge-Free Reverse Wormlike Micelle System. <i>Langmuir</i> , 2018 , 34, 8670-867	7 4	3
386	Hierarchical heterostructure of Ag-nanoparticle decorated fullerene nanorods (Ag-FNRs) as an effective single particle freestanding SERS substrate. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 188	7 ³⁶ 188	3 7 8
385	Template-Free Fabrication of Mesoporous Alumina Nanospheres Using Post-Synthesis Water-Ethanol Treatment of Monodispersed Aluminium Glycerate Nanospheres for Molybdenum Adsorption. <i>Small</i> , 2018 , 14, e1800474	11	34
384	Nanoarchitectonics for Hybrid and Related Materials for Bio-Oriented Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1702905	15.6	130
383	Percolation Behavior of Nonionic Reverse Micellar Solution. <i>Chemistry Letters</i> , 2017 , 46, 408-410	1.7	2
382	Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2017 , 27, 576-585	3.2	21
381	Formation of metal clusters in halloysite clay nanotubes. <i>Science and Technology of Advanced Materials</i> , 2017 , 18, 147-151	7.1	89
380	Spongelike Porous Silica Nanosheets: From "Soft" Molecular Trapping to DNA Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 4509-4518	9.5	21
379	Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance. <i>Scientific Reports</i> , 2017 , 7, 41773	4.9	37
378	Highly Networked Capsular Silica-Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. <i>ACS Applied Materials & English Sension</i> , 19, 9945-9954	9.5	48
377	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 627-648	5.1	321
376	Visual Detection of Cesium Ions in Domestic Water Supply or Seawater using a Nano-optode. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 678-683	5.1	49
375	Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 9, 18986-1899.	₃ 9.5	53
374	Simple Fabrication of Titanium Dioxide/N-Doped Carbon Hybrid Material as Non-Precious Metal Electrocatalyst for the Oxygen Reduction Reaction. <i>ACS Applied Materials & Discourt Materials & Discourt Metal Metal Materials & Discourt Metal Met</i>	′82 ⁵ 18′	7 <mark>8</mark> 9
373	Nanoarchitectonics of Nanoporous Carbon Materials from Natural Resource for Supercapacitor Application. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2017 , 27, 48-56	3.2	21

372	Directing Assembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Drug Delivery. ACS Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Drug Delivery. ACS Applied Materials & Drug Delivery. ACS Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Drug Delivery. ACS Drug Delivery. ACS Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. ACS Drug Drug Drug Delivery. ACS Drug Drug Drug Drug Drug Drug Drug Drug</i></i>	9.5	199
371	Symmetric Raman Tensor Contributes to Chiral Vibrational Sum-Frequency Generation from Binaphthyl Amphiphile Monolayers on Water: Study of Electronic Resonance Amplitude and Phase Profiles. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 11241-11250	3.8	15
370	Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 23658-23676	3.6	55
369	Cobalt Oxide/Reduced Graphene Oxide Composite with Enhanced Electrochemical Supercapacitance Performance. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 955-962	5.1	67
368	Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 967-1004	5.1	232
367	pH-Responsive Cotton Effects in the dd Transition Band of Self-Assembling Copper(II) Complexes with a Cholesteryl-Armed Ligand. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 739-745	5.1	9
366	Coordination Polymer Nanoglue: Robust Adhesion Based on Collective Lamellar Stacking of Nanoplates. <i>ACS Nano</i> , 2017 , 11, 3662-3670	16.7	23
365	Redox-Active Polymers for Energy Storage Nanoarchitectonics. <i>Joule</i> , 2017 , 1, 739-768	27.8	263
364	A Nanoporous Cytochrome c Film with Highly Ordered Porous Structure for Sensing of Toxic Vapors. <i>Advanced Materials</i> , 2017 , 29, 1702295	24	20
363	Selective CO Capture and High Proton Conductivity of a Functional Star-of-David Catenane Metal-Organic Framework. <i>Advanced Materials</i> , 2017 , 29, 1703301	24	34
362	Manipulation of fullerene superstructures by complexing with polycyclic aromatic compounds. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 29099-29105	3.6	9
361	Mesoporous Alumina as an Effective Adsorbent for Molybdenum (Mo) toward Instant Production of Radioisotope for Medical Use. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 1174-1179	5.1	40
360	Layer-by-Layer Nanolayers for Green Science 2017 , 335-352		O
359	Suppression of Myogenic Differentiation of Mammalian Cells Caused by Fluidity of a Liquid-Liquid Interface. <i>ACS Applied Materials & Acs Acc Acc Acc Acc Acc Acc Acc Acc Acc</i>	9.5	42
358	Conformation Manipulation and Motion of a Double Paddle Molecule on an Au(111) Surface. <i>ACS Nano</i> , 2017 , 11, 10357-10365	16.7	42
357	Neural differentiation on aligned fullerene C nanowhiskers. <i>Chemical Communications</i> , 2017 , 53, 11024	-15 1& 27	35
356	Morphology Adjustable Silica Nanosheets for Immobilization of Gold Nanoparticles. <i>ChemistrySelect</i> , 2017 , 2, 5793-5799	1.8	8
355	Intentional Closing/Opening of "Hole-in-Cube" Fullerene Crystals with Microscopic Recognition Properties. <i>ACS Nano</i> , 2017 , 11, 7790-7796	16.7	57

354	Mesostructured fullerene crystals through inverse polymeric micelle assembly. <i>Materials Letters</i> , 2017 , 209, 272-275	3.3	3	
353	A Simple Approach to Generate Hollow Carbon Nanospheres Loaded with Uniformly Dispersed Metal Nanoparticles. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 5413-5416	2.3	3	
352	A graphene-polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 8854-8864	7.3	100	
351	Fabrication of Silica-Protein Hierarchical Nanoarchitecture with Gas-Phase Sensing Activity. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 5908-5917	1.3	11	
350	Mechanically Induced Opening-Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. <i>ChemPhysChem</i> , 2017 , 18, 1470-1474	3.2	39	
349	Stimuli-Responsive Charge-Free Reverse Micelles in Non-Aqueous Media 2017 , 37-61			
348	Nanoarchitectonics: a navigator from materials to life. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 208-211	7.8	69	
347	Nanoarchitectonics of Biomimetic Membranes 2017 , 39-59			
346	Wool Carpet Dye Adsorption on Nanoporous Carbon Materials Derived from Agro-Product. <i>Journal of Carbon Research</i> , 2017 , 3, 12	3.3	19	
345	Exploration of Molecular Function (Molecular Recognition and Molecular Machinery) beyond Molecular Design and Synthesis: Surface Science May Bring One-Million-Times Better Results!?. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2017 , 75, 219-227	0.2	4	
344	Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. <i>ACS Applied Materials & Design Section</i> , 9, 44458-44465	9.5	43	
343	Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent. <i>Chemical Communications</i> , 2016 , 53, 236-239	5.8	33	
342	Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth. <i>ACS Nano</i> , 2016 , 10, 8796-802	16.7	75	
341	Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C/C alcohol discrimination. <i>Science and Technology of Advanced Materials</i> , 2016 , 17, 483-492	7.1	36	
340	Nanoarchitectonics. Japanese Journal of Applied Physics, 2016, 55, 1102A6	1.4	49	
339	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8228-34	16.4	138	
338	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. <i>Angewandte Chemie</i> , 2016 , 128, 8368-8374	3.6	25	
337	Thermally Induced Intra-Carboxyl Proton Shuttle in a Molecular Rack-and-Pinion Cascade Achieving Macroscopic Crystal Deformation. <i>Angewandte Chemie</i> , 2016 , 128, 14848-14852	3.6	1	

336	From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. <i>ACS Applied Materials & Company Sensing Sensing Applications</i> . <i>ACS Applied Materials & Company Sensing Sensi</i>	9.5	35
335	Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework. <i>Nature Communications</i> , 2016 , 7, 11564	17.4	38
334	Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. <i>Advanced Materials</i> , 2016 , 28, 1251-86	24	373
333	Hierarchically Structured Fullerene C70 Cube for Sensing Volatile Aromatic Solvent Vapors. <i>ACS Nano</i> , 2016 , 10, 6631-7	16.7	112
332	BODIPY based hyperbranched conjugated polymers for detecting organic vapors. <i>Polymer Chemistry</i> , 2016 , 7, 4213-4225	4.9	26
331	Surface Oxidized Carbon Nanotubes Uniformly Coated with Nickel Ferrite Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2016 , 26, 1301-1308	3.2	11
330	Atomic architectonics, nanoarchitectonics and microarchitectonics for strategies to make junk materials work as precious catalysts. <i>CrystEngComm</i> , 2016 , 18, 6770-6778	3.3	29
329	Surfactant-Triggered Nanoarchitectonics of Fullerene C Crystals at a Liquid-Liquid Interface. <i>Langmuir</i> , 2016 , 32, 12511-12519	4	43
328	Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8426-30	16.4	84
327	Molecular cavity nanoarchitectonics for biomedical application and mechanical cavity manipulation. <i>CrystEngComm</i> , 2016 , 18, 4890-4899	3.3	31
326	Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5737-5744	13	38
325	What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. <i>Polymer Journal</i> , 2016 , 48, 371-389	2.7	161
324	Nanoarchitectonics for carbon-material-based sensors. <i>Analyst, The</i> , 2016 , 141, 2629-38	5	91
323	Silica Nanomaterials. <i>Methods in Pharmacology and Toxicology</i> , 2016 , 137-151	1.1	1
322	Catalytic nanoarchitectonics for environmentally compatible energy generation. <i>Materials Today</i> , 2016 , 19, 12-18	21.8	145
321	Facile Synthesis of Tellurium Nanowires and Study of Their Third-Order Nonlinear Optical Properties. <i>Journal of the Brazilian Chemical Society</i> , 2016 ,	1.5	7
320	The Way to Nanoarchitectonics and the Way of Nanoarchitectonics. Advanced Materials, 2016, 28, 989-9	9 2 4	192
319	Interfaces Working for Biology: Solving Biological Mysteries and Opening Up Future Nanoarchitectonics. <i>ChemNanoMat</i> , 2016 , 2, 333-343	3.5	53

318	Antibacterial Effect of Silver-Incorporated Flake-Shell Nanoparticles under Dual-Modality. <i>ACS Applied Materials & Dual-Modality (Nature of State </i>	9.5	38	
317	Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres. <i>Applied Physics Letters</i> , 2016 , 109, 041901	3.4	5	
316	Mechano-Nanoarchitectonics for Bio-Functions at Interfaces. <i>Analytical Sciences</i> , 2016 , 32, 1141-1149	1.7	23	
315	Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 12576-81	3.6	62	
314	Coordination nanoarchitectonics at interfaces between supramolecular and materials chemistry. <i>Coordination Chemistry Reviews</i> , 2016 , 320-321, 139-152	23.2	74	
313	Shape-controlled cobalt phosphide nanoparticles as volatile organic solvent sensor. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4967-4977	7.1	15	
312	Electrochemically Organized Isolated Fullerene-Rich Thin Films with Optical Limiting Properties. <i>ACS Applied Materials & Description (Control of the Control of the Contro</i>	9.5	22	
311	Driving nanocars and nanomachines at interfaces: From concept of nanoarchitectonics to actual use in world wide race and hand operation. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 1102A2	1.4	34	
310	Thermally Induced Intra-Carboxyl Proton Shuttle in a Molecular Rack-and-Pinion Cascade Achieving Macroscopic Crystal Deformation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14628-14632	16.4	19	
309	Mesoporous graphitic carbon microtubes derived from fullerene C70 tubes as a high performance electrode material for advanced supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13899-1390)6 ¹³	64	
308	Nanoporous Carbon Tubes from Fullerene Crystals as the Œlectron Carbon Source. <i>Angewandte Chemie</i> , 2015 , 127, 965-969	3.6	14	
307	Nanosheet transfection: effective transfer of naked DNA on silica glass. NPG Asia Materials, 2015, 7, e1	8 4æ 38	3426	
306	Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. <i>Nano Letters</i> , 2015 , 15, 4793-8	11.5	49	
305	Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2015 , 7, 15667-73	9.5	90	
304	Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals. <i>Nanotechnology</i> , 2015 , 26, 204002	3.4	30	
303	From Nanotechnology to Nanoarchitectonics. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 177-178	3.2	21	
302	Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations. <i>Ceramics International</i> , 2015 , 41, 9426-9432	5.1	14	
301	Nanoporous Activated Carbons Derived from Agro-Waste Corncob for Enhanced Electrochemical and Sensing Performance. <i>Bulletin of the Chemical Society of Japan</i> , 2015 , 88, 1108-1115	5.1	53	

300	Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. <i>Nano Today</i> , 2015 , 10, 138-167	17.9	238
299	Totally Phospholipidic Mesoporous Particles. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 7255-7263	3.8	7
298	Synthesis and characterizations of nanoporous carbon derived from Lapsi (Choerospondias axillaris) seed: Effect of carbonization conditions. <i>Advanced Powder Technology</i> , 2015 , 26, 894-900	4.6	18
297	Functional Nanomaterials Prepared by Nanoarchitectonics-Based Supramolecular Assembly. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2015 , 45-61	0.3	
296	Sodium Hydroxide Activated Nanoporous Carbons Based on Lapsi Seed Stone. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 1465-72	1.3	10
295	Gene transfer on inorganic/organic hybrid silica nanosheets. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 25455-62	3.6	17
294	In situ 2D-extraction of DNA wheels by 3D through-solution transport. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 32122-5	3.6	19
293	Highly ordered nanoporous carbon films with tunable pore diameters and their excellent sensing properties. <i>Chemistry - A European Journal</i> , 2015 , 21, 697-703	4.8	19
292	Nanoporous carbon tubes from fullerene crystals as the Electron carbon source. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 951-5	16.4	96
291	Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS2 co-catalyst assembled CdS QDs/TiO2 photoelectrode. <i>Chemical Communications</i> , 2015 , 51, 522-5	5.8	54
290	Production of Self-Assembled Fullerene (C60) Nanocrystals at Liquid-Liquid Interface. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 2394-9	1.3	7
289	Templated Synthesis for Nanoarchitectured Porous Materials. <i>Bulletin of the Chemical Society of Japan</i> , 2015 , 88, 1171-1200	5.1	479
288	Commentary: Nanoarchitectonics Think about NANO again. APL Materials, 2015, 3, 061001	5.7	32
287	Supramolecular Nanotechnology: Soft Assembly of Hard Nanomaterials 2015 , 95-108		
286	Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8988-91	16.4	86
285	Low-Band-Gap BODIPY Conjugated Copolymers for Sensing Volatile Organic Compounds. <i>Chemistry - A European Journal</i> , 2015 , 21, 17344-54	4.8	25
284	Mechanochemical Tuning of the Binaphthyl Conformation at the Air Water Interface. <i>Angewandte Chemie</i> , 2015 , 127, 9116-9119	3.6	19
283	A Single-Step Synthesis of Electroactive Mesoporous ProDOT-Silica Structures. <i>Angewandte Chemie</i> - <i>International Edition</i> , 2015 , 54, 8407-10	16.4	21

282	Manipulation of shell morphology of silicate spheres from structural evolution in a purely inorganic system. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1379-86	4.5	12
281	Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Large-Scale Tissue Engineering. <i>Advanced Materials</i> , 2015 , 27, 4020-6	24	101
280	Nanoarchitectonics: a new materials horizon for nanotechnology. <i>Materials Horizons</i> , 2015 , 2, 406-413	14.4	210
279	Chiral sensing by nonchiral tetrapyrroles. <i>Accounts of Chemical Research</i> , 2015 , 48, 521-9	24.3	76
278	Thin Film Nanoarchitectonics. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 466-479	3.2	44
277	Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation. Journal of Materials Chemistry A, 2015 , 3, 6614-6619	13	63
276	Composite Nanoarchitectonics for Ternary Systems of Reduced Graphene Oxide/Carbon Nanotubes/Nickel Oxide with Enhanced Electrochemical Capacitor Performance. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 267-274	3.2	63
275	Promoted CII bond cleavage over intermetallic TaPt3 catalyst toward low-temperature energy extraction from ethanol. <i>Energy and Environmental Science</i> , 2015 , 8, 1685-1689	35.4	35
274	Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions. <i>Chemistry of Materials</i> , 2014 , 26, 519-532	9.6	77
273	Photocatalytic water splitting under visible light by mixed-valence Sn(3)O(4). <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 3790-3	9.5	135
272	Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks. <i>Chemistry - A European Journal</i> , 2014 , 20, 4217-21	4.8	226
271	Conformational interchange of a carbohydrate by mechanical compression at the air-water interface. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10286-94	3.6	12
270	Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide. <i>ACS Applied Materials & District Research</i> , 18352-9	9.5	49
269	Bioinspired nanoarchitectonics as emerging drug delivery systems. <i>New Journal of Chemistry</i> , 2014 , 38, 5149-5163	3.6	118
268	Demonstration of ultrarapid interfacial formation of 1D fullerene nanorods with photovoltaic properties. <i>ACS Applied Materials & Description</i> (2014), 6, 15597-603	9.5	60
267	Intracellular imaging of cesium distribution in Arabidopsis using Cesium Green. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 8208-11	9.5	30
266	Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18480-18487	13	97
265	Research Update: Mesoporous sensor nanoarchitectonics. <i>APL Materials</i> , 2014 , 2, 030701	5.7	57

264	Mesoporous architectures with highly crystallized frameworks. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12096-12103	13	26
263	Tunable, functional carbon spheres derived from rapid synthesis of resorcinol-formaldehyde resins. <i>ACS Applied Materials & Design Research (Materials & Design Research)</i> 10649-55	9.5	78
262	Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 9713-46	3.6	265
261	Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. <i>Nano Today</i> , 2014 , 9, 378-394	17.9	210
260	Polymeric micelle assembly for preparation of large-sized mesoporous metal oxides with various compositions. <i>Langmuir</i> , 2014 , 30, 651-9	4	132
259	Aligned 1-D nanorods of a Egelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8548-51	16.4	77
258	Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. <i>Small</i> , 2014 , 10, 2096-107	11	505
257	Facile fabrication of silver nanoclusters as promising surface-enhanced Raman scattering substrates. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 2245-51	1.3	7
256	Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms. <i>ACS Nano</i> , 2014 , 8, 5240-8	16.7	33
255	Self-assembly: from amphiphiles to chromophores and beyond. <i>Molecules</i> , 2014 , 19, 8589-609	4.8	54
254	Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. <i>Chemistry Letters</i> , 2014 , 43, 36-68	1.7	761
253	In-situ formation of silver nanoparticles using nonionic surfactant reverse micelles as nanoreactors. Journal of Nanoscience and Nanotechnology, 2014 , 14, 2238-44	1.3	7
252	Nanoarchitectonics of molecular aggregates: science and technology. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 390-401	1.3	35
251	Low-temperature remediation of NO catalyzed by interleaved CuO nanoplates. <i>Advanced Materials</i> , 2014 , 26, 4481-5	24	66
250	MOF-derived Nanoporous Carbon as Intracellular Drug Delivery Carriers. <i>Chemistry Letters</i> , 2014 , 43, 717-719	1.7	149
249	Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. <i>Thin Solid Films</i> , 2014 , 554, 32-40	2.2	12
248	Nanoporous carbon sensor with cage-in-fiber structure: highly selective aniline adsorbent toward cancer risk management. <i>ACS Applied Materials & English (Materials & Materials & Materia</i>	9.5	57
247	Shell-adjustable hollow Boft Bilica spheres as a support for gold nanoparticles. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3600	13	55

(2013-2013)

246	Electrochemical synthesis of transparent, amorphous, CErich, photoactive, and low-doped film with an interconnected structure. <i>Small</i> , 2013 , 9, 2064-8	11	19
245	Controlling porphyrin nanoarchitectures at solid interfaces. <i>Langmuir</i> , 2013 , 29, 7291-9	4	14
244	Dynamic breathing of CO2 by hydrotalcite. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18040-3	3 16.4	57
243	Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on" cyanide probes. <i>Chemical Communications</i> , 2013 , 49, 10136-8	5.8	142
242	NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. <i>Nature Communications</i> , 2013 , 4, 2188	17.4	88
241	25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. <i>Advanced Materials</i> , 2013 , 25, 6477-512	24	345
240	Alcohol-induced decomposition of Olmstead's crystalline Ag(I)fullerene heteronanostructure yields Bucky cubes Journal of Materials Chemistry C, 2013, 1, 1174-1181	7.1	59
239	Light-harvesting nanorods based on pheophorbide-appending cellulose. <i>Biomacromolecules</i> , 2013 , 14, 3223-30	6.9	12
238	Ligand displacement for fixing manganese: relevance to cellular metal ion transport and synthesis of polymeric coordination complexes. <i>Dalton Transactions</i> , 2013 , 42, 2779-85	4.3	4
237	Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. Journal of the American Chemical Society, 2013, 135, 586-9	16.4	125
236	A bottom-up approach toward fabrication of ultrathin PbS sheets. <i>Nano Letters</i> , 2013 , 13, 409-15	11.5	81
235	Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at a liquid-liquid interface. <i>Langmuir</i> , 2013 , 29, 7195-202	4	62
234	Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2913	13	71
233	Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2080	7.1	70
232	A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14-19	13	670
231	Enhanced supercapacitor performance of N-doped mesoporous carbons prepared from a gelatin biomolecule. <i>ChemPhysChem</i> , 2013 , 14, 1563-9	3.2	40
230	Enzyme nanoarchitectonics: organization and device application. <i>Chemical Society Reviews</i> , 2013 , 42, 6322-45	58.5	330
229	Fullerene nanoarchitectonics: from zero to higher dimensions. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 166	52 ₄ .759	182

228	Langmuir nanoarchitectonics: one-touch fabrication of regularly sized nanodisks at the air-water interface. <i>Langmuir</i> , 2013 , 29, 7239-48	4	48
227	Interfacial nanoarchitectonics: lateral and vertical, static and dynamic. <i>Langmuir</i> , 2013 , 29, 8459-71	4	65
226	Alkyl imidazolium ionic-liquid-mediated formation of gold particle superstructures. <i>Langmuir</i> , 2013 , 29, 7186-94	4	20
225	Naked-eye discrimination of methanol from ethanol using composite film of oxoporphyrinogen and layered double hydroxide. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 5927-30	9.5	44
224	Colorimetric visualization of acid-base equilibria in non-polar solvent. <i>Chemical Communications</i> , 2013 , 49, 6870-2	5.8	24
223	Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10580-611	3.6	268
222	Bioactive flake-shell capsules: soft silica nanoparticles for efficient enzyme immobilization. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3248-3256	7.3	36
221	Structure of Nonionic Reverse Micelles in Octylbenzene. <i>Journal of Dispersion Science and Technology</i> , 2013 , 34, 684-691	1.5	1
220	Demonstration of Solvent-Induced One-Dimensional Nonionic Reverse Micelle Growth. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2585-2590	6.4	13
219	Worm-like soft nanostructures in nonionic systems: principles, properties and application as templates. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 4497-520	1.3	8
218	Micrometer-level naked-eye detection of caesium particulates in the solid state. <i>Science and Technology of Advanced Materials</i> , 2013 , 14, 015002	7.1	31
217	Development of nanoporous structure in carbons by chemical activation with zinc chloride. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 2613-23	1.3	15
216	Formation and cleansing performance of bicontinuous microemulsions in water/poly (oxyethylene) alkyl ether/ester-type oil systems. <i>Journal of Oleo Science</i> , 2013 , 62, 803-8	1.6	7
215	Self-assembled fullerene nanostructures. <i>Journal of Oleo Science</i> , 2013 , 62, 541-53	1.6	17
214	Nonionic reverse micelles near the critical point. <i>Journal of Oleo Science</i> , 2013 , 62, 1073-81	1.6	1
213	Mechanical control of nanomaterials and nanosystems. <i>Advanced Materials</i> , 2012 , 24, 158-76	24	353
212	Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 2012, 85, 1-32	5.1	602
211	One-touch Nanofabrication of Regular-sized Disks through Interfacial Dewetting and Weak Molecular Interaction. <i>Chemistry Letters</i> , 2012 , 41, 170-172	1.7	12

210	Electrochemical Coupling Layer-by-layer (ECC-LbL) Assembly in Patterning Mode. <i>Chemistry Letters</i> , 2012 , 41, 383-385	1.7	23
209	Materials nanoarchitectonics for environmental remediation and sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2369-2377		147
208	Nonionic reverse micelle formulation and their microstructure transformations in an aromatic solvent ethylbenzene. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 414, 140-1	5d	18
207	Self-assembly of a mononuclear [Fe(III)(L)(EtOH)2] complex bearing an n-dodecyl chain on solid highly oriented pyrolytic graphite surfaces. <i>Chemistry - A European Journal</i> , 2012 , 18, 16419-25	4.8	6
206	Silica-based gene reverse transfection: an upright nanosheet network for promoted DNA delivery to cells. <i>Chemical Communications</i> , 2012 , 48, 8496-8	5.8	32
205	Evolution of molecular machines: from solution to soft matter interface. <i>Soft Matter</i> , 2012 , 8, 15-20	3.6	51
204	Nanoporous activated carbon derived from Lapsi (Choerospondias axillaris) seed stone for the removal of arsenic from water. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 7002-9	1.3	22
203	In situ electrochemical deposition and doping of C60 films applied to high-performance inverted organic photovoltaics. <i>Advanced Materials</i> , 2012 , 24, 5727-31	24	60
202	A Mechanically Controlled Indicator Displacement Assay. <i>Angewandte Chemie</i> , 2012 , 124, 9781-9784	3.6	14
201	A mechanically controlled indicator displacement assay. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9643-6	16.4	66
200	Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. <i>Science and Technology of Advanced Materials</i> , 2012 , 13, 053001	7.1	59
199	A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines. <i>Chemical Communications</i> , 2012 , 48, 9029-31	5.8	23
198	Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. <i>Chemical Communications</i> , 2012 , 48, 7259-61	5.8	559
197	Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-#International Journal of Nanomedicine, 2012, 7, 3625-35	7.3	19
196	Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. Journal of the American Chemical Society, 2012 , 134, 2864-7	16.4	538
195	Non-Aqueous Foams: Formation and Stability 2012 , 169-206		1
194	Materials self-assembly and fabrication in confined spaces. <i>Journal of Materials Chemistry</i> , 2012 , 22, 103	89	67
193	Water induced microstructure transformation of diglycerol monolaurate reverse micelles in ethylbenzene. <i>Journal of Oleo Science</i> , 2012 , 61, 575-84	1.6	6

192	Topographically controlled growth of silver nanoparticle clusters. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 202-204	2.5	
191	Flake-shell capsules: adjustable inorganic structures. <i>Small</i> , 2012 , 8, 2345-9	11	51
190	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. <i>NPG Asia Materials</i> , 2012 , 4, e17-e17	10.3	305
189	Inorganic Nanoarchitectonics for Biological Applications. <i>Chemistry of Materials</i> , 2012 , 24, 728-737	9.6	195
188	Preparation of Highly Ordered Nitrogen-Containing Mesoporous Carbon from a Gelatin Biomolecule and its Excellent Sensing of Acetic Acid. <i>Advanced Functional Materials</i> , 2012 , 22, 3596-360	415.6	177
187	All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10819-21	16.4	148
186	Molecular recognition: from solution science to nano/materials technology. <i>Chemical Society Reviews</i> , 2012 , 41, 5800-35	58.5	321
185	Structural characterizations of diglycerol monomyristate reverse micelles in aromatic solvent ethylbenzene. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 3716-24	1.3	1
184	Mixing antisolvents induced modulation in the morphology of crystalline C60. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6380-4	1.3	7
183	Nanostructured manganese oxide particles from coordination complex decomposition and their catalytic properties for ethanol oxidation. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 8087-9	3 ^{1.3}	2
182	Structure and rheology of charge-free reverse micelles in aromatic liquid phenyloctane. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 3701-15	1.3	1
181	Operation of micro and molecular machines: a new concept with its origins in interface science. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4802-11	3.6	44
180	Self-assembled pyrazinacene nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4868-76	3.6	20
179	Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. <i>ACS Applied Materials & Distributed & Di</i>	9.5	214
178	Reverse micelle microstructural transformations induced by oil and water. <i>Soft Matter</i> , 2011 , 7, 10017	3.6	21
177	Electrochemical-coupling layer-by-layer (ECC-LbL) assembly. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7348-51	16.4	131
176	Control of nano/molecular systems by application of macroscopic mechanical stimuli. <i>Chemical Science</i> , 2011 , 2, 195-203	9.4	56
175	Layer-by-layer assembly for drug delivery and related applications. <i>Expert Opinion on Drug Delivery</i> , 2011 , 8, 633-44	8	100

174	Growth control of nonionic reverse micelles by surfactant and solvent molecular architecture and water addition. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 4863-73	1.3	6
173	Carbon nanocage: super-adsorber of intercalators for DNA protection. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3084-90	1.3	10
172	Structure of diglycerol monomyristate reverse micelles in styrene: a small-angle X-ray scattering (SAXS) study. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 6986-94	1.3	3
171	Base-selective adsorption of nucleosides to pore-engineered nanocarbon, carbon nanocage. Journal of Nanoscience and Nanotechnology, 2011 , 11, 3959-64	1.3	10
170	SAXS and rheometry studies of diglycerol monolurate reverse micelles in styrene. <i>Journal of Oleo Science</i> , 2011 , 60, 393-401	1.6	2
169	Manipulation of thin film assemblies: Recent progress and novel concepts. <i>Current Opinion in Colloid and Interface Science</i> , 2011 , 16, 459-469	7.6	18
168	Layer-by-layer self-assembled shells for drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2011 , 63, 762-71	18.5	376
167	Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface. <i>Nanoscale Research Letters</i> , 2011 , 6, 304	5	24
166	Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. <i>Small</i> , 2011 , 7, 1288-308	11	150
165	Monolayers at air-water interfaces: from origins-of-life to nanotechnology. <i>Chemical Record</i> , 2011 , 11, 199-211	6.6	37
164	A Polymer-Electrolyte-Based Atomic Switch. Advanced Functional Materials, 2011, 21, 93-99	15.6	117
163	Highly crystalline and conductive nitrogen-doped mesoporous carbon with graphitic walls and its electrochemical performance. <i>Chemistry - A European Journal</i> , 2011 , 17, 3390-7	4.8	83
162	Structure and rheology of reverse micelles in dipentaerythrityl tri-(12-hydroxystearate)/oil systems. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4911-8	3.6	12
161	Anchoring of self-assembled monolayers of unsymmetrically-substituted chromophores with an oxoporphyrinogen surface clamp. <i>Chemical Communications</i> , 2011 , 47, 8533-5	5.8	10
160	Real time self-assembly and reassembly of molecular nanowires of trigeminal amphiphile porphyrins. <i>Chemical Communications</i> , 2011 , 47, 2285-7	5.8	36
159	Langmuir monolayers of a cholesterol-armed cyclen complex that can control enantioselectivity of amino acid recognition by surface pressure. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4895-900	3.6	59
158	Intrinsic parameters for the structure control of nonionic reverse micelles in styrene: SAXS and rheometry studies. <i>Langmuir</i> , 2011 , 27, 5862-73	4	33
157	Lipophilic tail architecture and molecular structure of neutralizing agent for the controlled rheology of viscoelastic fluid in amino acid-based anionic surfactant system. <i>Langmuir</i> , 2011 , 27, 2229-3	6 ⁴	22

156	Charge-free reverse wormlike micelles in nonaqueous media. <i>Langmuir</i> , 2011 , 27, 2340-8	4	46
155	Putting the 'N' in ACENE: pyrazinacenes and their structural relatives. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 5005-17	3.9	104
154	Reverse micelle microstructural transformations induced by surfactant molecular structure, concentration, and temperature. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 7665-75	1.3	10
153	Dynamic supramolecular systems at interfaces. Supramolecular Chemistry, 2011 , 23, 183-194	1.8	10
152	Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1-13	1.3	272
151	Fabrication and Applications of Silver Sulphide Based Ion Sensors. <i>Advanced Materials Research</i> , 2010 , 117, 7-14	0.5	
150	Structural Characterization of Nonionic Surfactant Reverse Micelles in Diglycerol Monolaurate/Squalene System. <i>Advanced Materials Research</i> , 2010 , 117, 87-92	0.5	
149	Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices. <i>Advances in Polymer Science</i> , 2010 , 51-87	1.3	82
148	Structure of Nonionic Surfactant Micelles in Organic Solvents: A SAXS Study 2010 , 17-57		1
147	Structure of polyglycerol oleic acid ester nonionic surfactant reverse micelles in decane: growth control by headgroup size. <i>Langmuir</i> , 2010 , 26, 7015-24	4	38
147 146		4	38
	control by headgroup size. <i>Langmuir</i> , 2010 , 26, 7015-24 Effect of polyol on the structure of nonionic surfactant reverse micelles in glycerol		3
146	control by headgroup size. <i>Langmuir</i> , 2010 , 26, 7015-24 Effect of polyol on the structure of nonionic surfactant reverse micelles in glycerol monoisostearate/decane systems. <i>Langmuir</i> , 2010 , 26, 3115-20 Chemically programmed ultrahigh density two-dimensional semiconductor superlattice array.	4	3
146	control by headgroup size. Langmuir, 2010, 26, 7015-24 Effect of polyol on the structure of nonionic surfactant reverse micelles in glycerol monoisostearate/decane systems. Langmuir, 2010, 26, 3115-20 Chemically programmed ultrahigh density two-dimensional semiconductor superlattice array. Journal of the American Chemical Society, 2010, 132, 1212-3 Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference	4	3 23
146 145 144	Effect of polyol on the structure of nonionic surfactant reverse micelles in glycerol monoisostearate/decane systems. <i>Langmuir</i> , 2010 , 26, 3115-20 Chemically programmed ultrahigh density two-dimensional semiconductor superlattice array. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1212-3 Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12868-70 Effect of lipophilic tail architecture and solvent engineering on the structure of trehalose-based	16.4	3 23 105 33
146 145 144	Effect of polyol on the structure of nonionic surfactant reverse micelles in glycerol monoisostearate/decane systems. Langmuir, 2010, 26, 3115-20 Chemically programmed ultrahigh density two-dimensional semiconductor superlattice array. Journal of the American Chemical Society, 2010, 132, 1212-3 Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. Journal of the American Chemical Society, 2010, 132, 12868-70 Effect of lipophilic tail architecture and solvent engineering on the structure of trehalose-based nonionic surfactant reverse micelles. Journal of Physical Chemistry B, 2010, 114, 12008-17 Open-mouthed metallic microcapsules: exploring performance improvements at	4 16.4 16.4 3.4	3 23 105 33
146 145 144 143	Effect of polyol on the structure of nonionic surfactant reverse micelles in glycerol monoisostearate/decane systems. Langmuir, 2010, 26, 3115-20 Chemically programmed ultrahigh density two-dimensional semiconductor superlattice array. Journal of the American Chemical Society, 2010, 132, 1212-3 Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. Journal of the American Chemical Society, 2010, 132, 12868-70 Effect of lipophilic tail architecture and solvent engineering on the structure of trehalose-based nonionic surfactant reverse micelles. Journal of Physical Chemistry B, 2010, 114, 12008-17 Open-mouthed metallic microcapsules: exploring performance improvements at agglomeration-free interiors. Journal of the American Chemical Society, 2010, 132, 14415-7 By what means should nanoscaled materials be constructed: molecule, medium, or human?	4 16.4 16.4 3.4 16.4	3 23 105 33 86

(2009-2010)

138	Two-dimensional nanoarchitectonics based on self-assembly. <i>Advances in Colloid and Interface Science</i> , 2010 , 154, 20-9	14.3	141
137	Viscoelastic solution of long polyoxyethylene chain phytosterol/monoglyceride/water systems. <i>Colloid and Polymer Science</i> , 2010 , 288, 405-414	2.4	10
136	Solution behavior of aqueous mixtures of low and high molecular weight hydrophobic amphiphiles. <i>Colloid and Polymer Science</i> , 2010 , 288, 739-751	2.4	1
135	Advances in biomimetic and nanostructured biohybrid materials. <i>Advanced Materials</i> , 2010 , 22, 323-36	24	251
134	Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Three-Component Coupling Reaction. <i>Angewandte Chemie</i> , 2010 , 122, 6097-6101	3.6	54
133	Layer-by-Layer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing. <i>Angewandte Chemie</i> , 2010 , 122, 9931-9933	3.6	63
132	Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5961-5	16.4	301
131	Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9737-9	16.4	276
130	Macroporous poly(aromatic amine): Synthesis and film fabrication. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 354, 156-161	5.1	10
129	Nonaqueous foam with outstanding stability in diglycerol monomyristate/olive oil system. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 353, 157-165	5.1	35
128	Self-Assembled Structures of Diglycerol Monolaurate- and Monomyristate in Olive Oil. <i>Journal of Dispersion Science and Technology</i> , 2009 , 30, 1525-1532	1.5	7
127	Hierarchic Nanostructure for Auto-Modulation of Material Release: Mesoporous Nanocompartment Films. <i>Advanced Functional Materials</i> , 2009 , 19, 1792-1799	15.6	79
126	Soft Langmuir B lodgett Technique for Hard Nanomaterials. <i>Advanced Materials</i> , 2009 , 21, 2959-2981	24	190
125	Supramolecular templates for nanoflake-metal surfaces. <i>Chemistry - A European Journal</i> , 2009 , 15, 2763	-7 .8	53
124	Toward volatile and nonvolatile molecular memories: fluorescence switching based on fluoride-triggered interconversion of simple porphyrin derivatives. <i>Chemistry - A European Journal</i> , 2009 , 15, 2486-90	4.8	26
123	Rheology of wormlike micelles in aqueous systems of a mixed amino acid-based anionic surfactant and cationic surfactant. <i>Colloid and Polymer Science</i> , 2009 , 287, 1305-1315	2.4	36
122	Glycerol effects on the formation and rheology of cubic phase and related gel emulsion. <i>Journal of Colloid and Interface Science</i> , 2009 , 329, 366-71	9.3	34
121	Viscoelastic wormlike micelles in mixed nonionic fluorocarbon surfactants and structural transition induced by oils. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 1615-22	3.4	38

120	Hydrogen-bond-assisted "gold cold fusion" for fabrication of 2D web structures. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 1055-8	4.5	12
119	Solvent engineering for shape-shifter pure fullerene (C60). <i>Journal of the American Chemical Society</i> , 2009 , 131, 6372-3	16.4	173
118	Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. Journal of the American Chemical Society, 2009 , 131, 4220-1	16.4	131
117	Viscoelastic wormlike micelles of long polyoxyethylene chain phytosterol with lipophilic nonionic surfactant in aqueous solution. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 3043-50	3.4	42
116	Supramolecular approaches to biological therapy. Expert Opinion on Biological Therapy, 2009 , 9, 307-20	5.4	28
115	Diverse self-assembly in soluble oligoazaacenes: a microscopy study. <i>Langmuir</i> , 2009 , 25, 8408-13	4	26
114	Shape-dependent confinement in ultrasmall zero-, one-, and two-dimensional PbS nanostructures. Journal of the American Chemical Society, 2009 , 131, 11282-3	16.4	64
113	Structural investigation of diglycerol polyisostearate reverse micelles in organic solvents. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 12669-79	3.4	12
112	Two-dimensional molecular array of porphyrin derivatives with bright and dark spots as a model of two-digit molecular-dot memory. <i>Synthetic Metals</i> , 2009 , 159, 765-768	3.6	11
111	Tunable parameters for the structural control of reverse micelles in glycerol monoisostearate/oil systems: a SAXS study. <i>Langmuir</i> , 2009 , 25, 4435-42	4	36
110	Structure of nonionic surfactant (glycerol alpha-monomyristate) micelles in organic solvents: a SAXS study. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6290-8	3.4	45
109	Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. <i>Soft Matter</i> , 2009 , 5, 3562	3.6	75
108	Anion-complexation-induced stabilization of charge separation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16138-46	16.4	85
107	Pyrazinacenes: aza analogues of acenes. <i>Journal of Organic Chemistry</i> , 2009 , 74, 8914-23	4.2	55
106	Aqueous foams stabilized by n-dodecyl-ED-maltoside, hexaethyleneglycol monododecyl ether, and their 1:1 mixture. <i>Soft Matter</i> , 2009 , 5, 3070	3.6	49
105	Intrinsic parameters for structural variation of reverse micelles in nonionic surfactant (glycerol alpha-monolaurate)/oil systems: a SAXS study. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 4251-9	3.6	25
104	Block-copolymer-nanowires with nanosized domain segregation and high charge mobilities as stacked p/n heterojunction arrays for repeatable photocurrent switching. <i>Journal of the American Chemical Society</i> , 2009 , 131, 18030-1	16.4	90
103	Nuclear magnetic resonance signaling of molecular chiral information using an achiral reagent. Journal of the American Chemical Society, 2009, 131, 9494-5	16.4	62

(2008-2009)

102	Structural investigation of diglycerol monolaurate reverse micelles in nonpolar oils cyclohexane and octane. <i>Journal of Oleo Science</i> , 2009 , 58, 235-42	1.6	4
101	Langmuir films of unusual components. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 3-18	1.3	38
100	Challenges and breakthroughs in recent research on self-assembly. <i>Science and Technology of Advanced Materials</i> , 2008 , 9, 014109	7.1	645
99	Nanostructured microspheres of MnO2 formed by room temperature solution processing. <i>Chemical Communications</i> , 2008 , 383-5	5.8	28
98	Stimuli-free auto-modulated material release from mesoporous nanocompartment films. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2376-7	16.4	135
97	Phase behavior and microstructures of nonionic fluorocarbon surfactant in aqueous systems. Journal of Physical Chemistry B, 2008 , 112, 10520-7	3.4	23
96	Decomposition of dinuclear manganese complexes for the preparation of nanostructured oxide materials. <i>Inorganic Chemistry</i> , 2008 , 47, 8306-14	5.1	19
95	Nanomosaic: formation of nanodomains confined in a two-dimensional molecular plane. <i>Langmuir</i> , 2008 , 24, 1682-5	4	37
94	Molecular Arrays and Patterns for Supramolecular Materials. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2008 , 21, 553-558	0.7	9
93	Dynamic surface tension and surface dilatational elasticity properties of mixed surfactant/protein systems. <i>Journal of Oleo Science</i> , 2008 , 57, 485-94	1.6	15
92	Rheological behavior of viscoelastic wormlike micelles in mixed sodium dodecyl trioxyethylene sulfatefhonolaurin aqueous system. <i>Colloid and Polymer Science</i> , 2008 , 286, 1613-1619	2.4	21
91	Biomaterials and biofunctionality in layered macromolecular assemblies. <i>Macromolecular Bioscience</i> , 2008 , 8, 981-90	5.5	104
90	A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7254-7	16.4	128
89	Multi-Dimensional Control of Surfactant-Guided Assemblies of Quantum Gold Particles. <i>Advanced Materials</i> , 2008 , 20, 4027-4032	24	49
88	A Layered Mesoporous Carbon Sensor Based on Nanopore-Filling Cooperative Adsorption in the Liquid Phase. <i>Angewandte Chemie</i> , 2008 , 120, 7364-7367	3.6	23
87	Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems. <i>Journal of Colloid and Interface Science</i> , 2008 , 322, 596-604	9.3	55
86	Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system. <i>Journal of Colloid and Interface Science</i> , 2008 , 328, 172-9	9.3	42
85	Home Made Ion-selective Electrodes for Education. <i>Transactions of the Materials Research Society of Japan</i> , 2008 , 33, 345-349	0.2	

84	Shape, size, and structural control of reverse micelles in diglycerol monomyristate nonionic surfactant system. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 1664-71	3.4	44
83	Oil-induced anomalous thermoresponsive viscoelasticity in fluorinated surfactant systems. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 12146-53	3.4	10
82	Phase behavior and self-organized structures of diglycerol monolaurate in different nonpolar organic solvents. <i>Langmuir</i> , 2007 , 23, 6606-13	4	35
81	Wormlike micelles in mixed surfactant systems: effect of cosolvents. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 10438-47	3.4	36
80	Effect of water on foaming properties of diglycerol fatty acid ester-oil systems. <i>Langmuir</i> , 2007 , 23, 69	18 _‡ 26	27
79	Formation and properties of reverse micellar cubic liquid crystals and derived emulsions. <i>Langmuir</i> , 2007 , 23, 11007-14	4	24
78	Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. <i>Chemistry of Materials</i> , 2007 , 19, 4367-4372	9.6	114
77	One-pot separation of tea components through selective adsorption on pore-engineered nanocarbon, carbon nanocage. <i>Journal of the American Chemical Society</i> , 2007 , 129, 11022-3	16.4	130
76	Catalysis of a peptidic micellar assembly covalently immobilized within mesoporous silica channels: importance of amphiphilic spatial design. <i>Chemistry - A European Journal</i> , 2007 , 13, 1731-6	4.8	46
75	Preparation and characterization of a novel organic-inorganic nanohybrid "cerasome" formed with a liposomal membrane and silicate surface. <i>Chemistry - A European Journal</i> , 2007 , 13, 5272-81	4.8	129
74	Self-assembled microstructures of functional molecules. <i>Current Opinion in Colloid and Interface Science</i> , 2007 , 12, 106-120	7.6	76
73	Foam stabilized by dispersed surfactant solid and lamellar liquid crystal in aqueous systems of diglycerol fatty acid esters. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 293, 262-271	5.1	45
72	Coordination chemistry and supramolecular chemistry in mesoporous nanospace. <i>Coordination Chemistry Reviews</i> , 2007 , 251, 2562-2591	23.2	167
71	Unusual formation of small aggregates by mixing giant multilamellar vesicles. <i>Journal of Colloid and Interface Science</i> , 2007 , 312, 108-13	9.3	5
70	Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems. <i>Journal of Colloid and Interface Science</i> , 2007 , 311, 276-84	9.3	130
69	Wormlike micelles in Tween-80/CmEO3 mixed nonionic surfactant systems in aqueous media. Journal of Colloid and Interface Science, 2007 , 312, 489-97	9.3	59
68	Short haired wormlike micelles in mixed nonionic fluorocarbon surfactants. <i>Journal of Colloid and Interface Science</i> , 2007 , 314, 223-9	9.3	23
67	Small-angle X-ray scattering (SAXS) study on nonionic fluorinated micelles in aqueous system. Journal of Colloid and Interface Science, 2007, 316, 815-24	9.3	34

(2006-2007)

66	Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. <i>Small</i> , 2007 , 3, 2019-23	11	125
65	Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 2319-40	3.6	1040
64	Phase Behavior of Diglycerol Monomyristate in Different Nonpolar Organic Solvent Systems. Journal of Dispersion Science and Technology, 2007 , 28, 1236-1241	1.5	18
63	Interfacial Properties of Aqueous Nonionic Fluorocarbon Surfactant Solutions. <i>Journal of Dispersion Science and Technology</i> , 2007 , 28, 577-581	1.5	5
62	Aqueous Phase Behavior of Diglycerol Fatty Acid Esters. <i>Journal of Dispersion Science and Technology</i> , 2007 , 28, 883-891	1.5	17
61	Super-Stable Nonaqueous Foams in Diglycerol Fatty Acid EstersNon Polar Oil Systems. <i>Journal of Dispersion Science and Technology</i> , 2007 , 28, 133-142	1.5	30
60	Self-Assembly Structures of a Phenol-Substituted Porphyrin in the Solid State: Hydrogen Bonding, Kagom[Lattice, and Defect Tolerance. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16174-16180	3.8	41
59	Assemblies of biomaterials in mesoporous media. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 1510-32	1.3	80
58	Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies) and their related functions. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 2278-301	1.3	111
57	Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems. <i>Langmuir</i> , 2006 , 22, 8337-	-445	69
56	Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14478-9	16.4	159
55	Regulating the stability of 2D crystal structures using an oxidation state-dependent molecular conformation. <i>Chemical Communications</i> , 2006 , 2320-2	5.8	42
54	How molecules accommodate a 2D crystal lattice mismatch: an unusual 'mixed' conformation of tetraphenylporphyrin. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 5034-7	3.6	48
53	Perfectly straight nanowires of fullerenes bearing long alkyl chains on graphite. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6328-9	16.4	119
52	Phase behavior of monoglycerol fatty acid esters in nonpolar oils: reverse rodlike micelles at elevated temperatures. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12266-73	3.4	65
51	Room temperature liquid fullerenes: an uncommon morphology of C60 derivatives. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10384-5	16.4	123
50	Phase behavior of diglycerol fatty acid esters-nonpolar oil systems. <i>Langmuir</i> , 2006 , 22, 1449-54	4	68
49	Aqueous foam stabilized by dispersed surfactant solid and lamellar liquid crystalline phase. <i>Journal of Colloid and Interface Science</i> , 2006 , 301, 274-81	9.3	46

48	Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. <i>Journal of Porous Materials</i> , 2006 , 13, 379-383	2.4	97
47	Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. Journal of Materials Chemistry, 2005 , 15, 5122		136
46	Piezoluminescence at the air-water interface through dynamic molecular recognition driven by lateral pressure application. <i>Langmuir</i> , 2005 , 21, 976-81	4	125
45	Hierarchical supramolecular fullerene architectures with controlled dimensionality. <i>Chemical Communications</i> , 2005 , 5982-4	5.8	151
44	A condensable amphiphile with a cleavable tail as a "Lizard" template for the sol-gel synthesis of functionalized mesoporous silica. <i>Journal of the American Chemical Society</i> , 2004 , 126, 988-9	16.4	132
43	Template-assisted nano-patterning: from the submicron scale to the submolecular level. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 23-34	1.3	55
42	Layer-by-Layer Self-Assembling of Liposomal Nanohybrid Derasomelon Substrates. <i>Langmuir</i> , 2002 , 18, 6709-6711	4	111
41	Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic-inorganic hybrid. <i>Journal of the American Chemical Society</i> , 2002 , 124, 7892-3	16.4	193
40	Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Air Water Interface. <i>Journal of the American Chemical Society</i> , 2000 , 122, 7835-7836	16.4	130
39	Modulated Supramolecular Assemblies Composed of Tripeptide Derivatives: Formation of Micrometer-Scale Rods, Nanometer-Size Needles, and Regular Patterns with Molecular-Level Flatness from the Same Compound. <i>Langmuir</i> , 2000 , 16, 4929-4939	4	44
38	A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 146, 337-346	5.1	208
37	Activity and stability of glucose oxidase in molecular films assembled alternately with polyions. Journal of Bioscience and Bioengineering, 1999 , 87, 69-75	3.3	170
36	Multisite Recognition of Aqueous Dipeptides by Oligoglycine Arrays Mixed with Guanidinium and Other Receptor Units at the Air Water Interface. <i>Langmuir</i> , 1999 , 15, 3875-3885	4	64
35	Preparation of Organic-Inorganic Hybrid Vesicle Clerasome Derived from Artificial Lipid with Alkoxysilyl Head. <i>Chemistry Letters</i> , 1999 , 28, 661-662	1.7	105
34	Regulation of Esheet Structures within Amyloid-Like Esheet Assemblage from Tripeptide Derivatives. <i>Journal of the American Chemical Society</i> , 1998 , 120, 12192-12199	16.4	194
33	Molecular Recognition at AirWater and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction. <i>Accounts of Chemical Research</i> , 1998 , 31, 371-378	24.3	375
32	A QCM Study on Adsorption of Macrocyclic Sugar-Cluster to Variously-Functionalized Monolayers. <i>Chemistry Letters</i> , 1998 , 27, 1007-1008	1.7	20
31	Recognition of aqueous flavin mononucleotide on the surface ofbinary monolayers of guanidinium and melamine amphiphiles. <i>Journal of Materials Chemistry</i> , 1997 , 7, 1155-1161		52

30	Control of molecular ordering in guanidinium-functionalizedmonolayer by carboxylate template molecules. <i>Chemical Communications</i> , 1997 , 1357-1358	5.8	28
29	Molecular Patterning of a Guanidinium/Orotate Mixed Monolayer through Molecular Recognition with Flavin Adenine Dinucleotide. <i>Langmuir</i> , 1997 , 13, 519-524	4	81
28	Theoretical Study of Intermolecular Interaction at the LipidWater Interface. 1. Quantum Chemical Analysis Using a Reaction Field Theory. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 4810-4816	3.4	106
27	Syntheses and Interfacial Hydrogen-Bonded Network of Hexaalkyl Tris(Melamine) Amphiphiles. <i>Langmuir</i> , 1997 , 13, 5426-5432	4	44
26	Theoretical Study of Intermolecular Interaction at the Lipid Water Interface. 2. Analysis Based on the Poisson Boltzmann Equation. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 4817-4825	3.4	83
25	Alternate Assembly of Ordered Multilayers of SiO2 and Other Nanoparticles and Polyions. <i>Langmuir</i> , 1997 , 13, 6195-6203	4	403
24	Assembling Alternate Dye P olyion Molecular Films by Electrostatic Layer-by-Layer Adsorption. Journal of the American Chemical Society, 1997 , 119, 2224-2231	16.4	457
23	Effect of Melamine-Amphiphile Structure on the Extent of Two-Dimensional Hydrogen-Bonded Networks Incorporating Barbituric Acid. <i>Chemistry - A European Journal</i> , 1997 , 3, 1077-1082	4.8	64
22	Molecular Recognition of Aqueous Dipeptides at Multiple Hydrogen-Bonding Sites of Mixed Peptide Monolayers. <i>Journal of the American Chemical Society</i> , 1996 , 118, 9545-9551	16.4	100
21	Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces. <i>Journal of the American Chemical Society</i> , 1996 , 118, 8524-8530	16.4	203
20	Two-dimensional Molecular Patterning through Molecular Recognition. <i>Chemistry Letters</i> , 1996 , 25, 41	1- 4 . † 2	39
19	Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. <i>Journal of Bioscience and Bioengineering</i> , 1996 , 82, 502-506		174
18	Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. <i>Biotechnology and Bioengineering</i> , 1996 , 51, 163-7	4.9	224
17	Layer-by-layer architectures of concanavalin A by means of electrostatic and biospecific interactions. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 2313		109
16	Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption. Journal of the American Chemical Society, 1995 , 117, 6117-6123	16.4	1254
15	Molecular Recognition of Aqueous Dipeptides by Noncovalently Aligned Oligoglycine Units at the Air/Water Interface. <i>Journal of the American Chemical Society</i> , 1995 , 117, 11833-11838	16.4	89
14	A Theoretical Interpretation of Remarkable Enhancement of Intermolecular Binding at the Lipid-Water Interface. <i>Chemistry Letters</i> , 1995 , 24, 1001-1002	1.7	39
13	Multi-site Recognition of Flavin Adenine Dinucleotide by Mixed Monolayers on Water. <i>Chemistry Letters</i> , 1995 , 24, 701-702	1.7	50

12	Interactions of Calcium Ions with Phospholipid Membranes. Studies on .piA Isotherms and Electrochemical and Quartz-Crystal Microbalance Measurements. <i>Langmuir</i> , 1994 , 10, 2267-2271	4	22
11	Layer-by-Layer Assembly of Alternate Protein/Polyion Ultrathin Films. <i>Chemistry Letters</i> , 1994 , 23, 2323	-2 <i>3</i> 326	152
10	Detection of the phase transition of Langmuir-Blodgett films on a quartz-crystal microbalance in an aqueous phase. <i>Journal of the American Chemical Society</i> , 1989 , 111, 9190-9194	16.4	70
9	Langmuir-Blodgett films of an enzyme-lipid complex for sensor membranes. <i>Langmuir</i> , 1988 , 4, 1373-13	745	130
8	In situ weighing of water-deposited Langmuir B lodgett films on a piezoelectric quartz plate. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 1535-1537		29
7	Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination. <i>Advanced Materials Interfaces</i> ,2102241	4.6	3
6	Self-Assembled Fullerene Nanostructures: Synthesis and Applications. <i>Advanced Functional Materials</i> ,2106924	15.6	9
5	High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from Artocarpus heterophyllus Seed. <i>ACS Applied Energy Materials</i> ,	6.1	3
4	Macaroni Fullerene Crystals-Derived Mesoporous Carbon Tubes as the High Rate Performance Supercapacitor Electrode Material. <i>Bulletin of the Chemical Society of Japan</i> ,	5.1	14
3	Lipid coating technology: A potential solution to address the problem of sticky containers and vanishing drugs. <i>View</i> ,20200078	7.8	4
2	Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. <i>Bulletin of the Chemical Society of Japan</i> ,	5.1	7
1	Langmuir B lodgett Nanoarchitectonics, Out of the Box. <i>Accounts of Materials Research</i> ,	7.5	2