List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8464461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption. Journal of the American Chemical Society, 1995, 117, 6117-6123.	6.6	1,382
2	Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics, 2007, 9, 2319.	1.3	1,143
3	Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. Chemistry Letters, 2014, 43, 36-68.	0.7	813
4	A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. Journal of Materials Chemistry A, 2013, 1, 14-19.	5.2	739
5	Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials, 2008, 9, 014109.	2.8	695
6	Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 2012, 85, 1-32.	2.0	650
7	Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chemical Communications, 2012, 48, 7259.	2.2	624
8	Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon. Journal of the American Chemical Society, 2012, 134, 2864-2867.	6.6	588
9	Direct Synthesis of MOFâ€Derived Nanoporous Carbon with Magnetic Co Nanoparticles toward Efficient Water Treatment. Small, 2014, 10, 2096-2107.	5.2	588
10	Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 2015, 88, 1171-1200.	2.0	512
11	Assembling Alternate Dyeâ~'Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption. Journal of the American Chemical Society, 1997, 119, 2224-2231.	6.6	503
12	Nanoarchitectonics for Dynamic Functional Materials from Atomicâ€∤Molecular‣evel Manipulation to Macroscopic Action. Advanced Materials, 2016, 28, 1251-1286.	11.1	441
13	Alternate Assembly of Ordered Multilayers of SiO2and Other Nanoparticles and Polyions. Langmuir, 1997, 13, 6195-6203.	1.6	435
14	25th Anniversary Article: What Can Be Done with the Langmuirâ€Blodgett Method? Recent Developments and its Critical Role in Materials Science. Advanced Materials, 2013, 25, 6477-6512.	11.1	411
15	Molecular Recognition at Airâ ``Water and Related Interfaces:Â Complementary Hydrogen Bonding and Multisite Interaction. Accounts of Chemical Research, 1998, 31, 371-378.	7.6	406
16	Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 762-771.	6.6	404
17	Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule, 2017, 1, 739-768.	11.7	400
18	Mechanical Control of Nanomaterials and Nanosystems. Advanced Materials, 2012, 24, 158-176.	11.1	389

2

#	Article	IF	CITATIONS
19	Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 2013, 42, 6322.	18.7	376
20	Molecular recognition: from solution science to nano/materials technology. Chemical Society Reviews, 2012, 41, 5800.	18.7	371
21	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	2.0	369
22	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Materials, 2012, 4, e17-e17.	3.8	366
23	Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95.	2.8	322
24	Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Three omponent Coupling Reaction. Angewandte Chemie - International Edition, 2010, 49, 5961-5965.	7.2	321
25	Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Physical Chemistry Chemical Physics, 2014, 16, 9713.	1.3	319
26	Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Physical Chemistry Chemical Physics, 2013, 15, 10580.	1.3	311
27	Nanoarchitectonics: A Conceptual Paradigm for Design and Synthesis of Dimension-Controlled Functional Nanomaterials. Journal of Nanoscience and Nanotechnology, 2011, 11, 1-13.	0.9	309
28	Layerâ€by‣ayer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing. Angewandte Chemie - International Edition, 2010, 49, 9737-9739.	7.2	296
29	Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. Nano Today, 2015, 10, 138-167.	6.2	284
30	Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 2010, 22, 323-336.	11.1	275
31	Nanoarchitectonics: a new materials horizon for nanotechnology. Materials Horizons, 2015, 2, 406-413.	6.4	270
32	Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 2017, 90, 967-1004.	2.0	257
33	Synthesis of Nanoporous Carbon–Cobaltâ€Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks. Chemistry - A European Journal, 2014, 20, 4217-4221.	1.7	253
34	Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. , 1996, 51, 163-167.		243
35	The Way to Nanoarchitectonics and the Way of Nanoarchitectonics. Advanced Materials, 2016, 28, 989-992.	11.1	242
36	Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Nano Today, 2014, 9, 378-394.	6.2	236

#	Article	IF	CITATIONS
37	Natural Tubule Clay Template Synthesis of Silver Nanorods for Antibacterial Composite Coating. ACS Applied Materials & Interfaces, 2011, 3, 4040-4046.	4.0	235
38	Directing Assembly and Disassembly of 2D MoS ₂ Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 15286-15296.	4.0	232
39	A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146, 337-346.	2.3	229
40	Nanoarchitectonics: what's coming next after nanotechnology?. Nanoscale Horizons, 2021, 6, 364-378.	4.1	221
41	Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces. Journal of the American Chemical Society, 1996, 118, 8524-8530.	6.6	219
42	Soft Langmuir–Blodgett Technique for Hard Nanomaterials. Advanced Materials, 2009, 21, 2959-2981.	11.1	219
43	Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bulletin of the Chemical Society of Japan, 2018, 91, 1075-1111.	2.0	215
44	Regulation of β-Sheet Structures within Amyloid-Like β-Sheet Assemblage from Tripeptide Derivatives. Journal of the American Chemical Society, 1998, 120, 12192-12199.	6.6	208
45	Layered Paving of Vesicular Nanoparticles Formed with Cerasome as a Bioinspired Organicâ^'Inorganic Hybrid. Journal of the American Chemical Society, 2002, 124, 7892-7893.	6.6	208
46	Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 2012, 24, 728-737.	3.2	206
47	What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polymer Journal, 2016, 48, 371-389.	1.3	205
48	Fullerene Nanoarchitectonics: From Zero to Higher Dimensions. Chemistry - an Asian Journal, 2013, 8, 1662-1679.	1.7	198
49	Preparation of Highly Ordered Nitrogenâ€Containing Mesoporous Carbon from a Gelatin Biomolecule and its Excellent Sensing of Acetic Acid. Advanced Functional Materials, 2012, 22, 3596-3604.	7.8	194
50	Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. Journal of Bioscience and Bioengineering, 1996, 82, 502-506.	0.9	190
51	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie - International Edition, 2016, 55, 8228-8234.	7.2	184
52	Solvent Engineering for Shape-Shifter <i>Pure</i> Fullerene (C ₆₀). Journal of the American Chemical Society, 2009, 131, 6372-6373.	6.6	183
53	Activity and stability of glucose oxidase in molecular films assembled alternately with polyions. Journal of Bioscience and Bioengineering, 1999, 87, 69-75.	1.1	181
54	Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 2007, 251, 2562-2591.	9.5	179

LOK KUMAR SHRESTHA

#	Article	IF	CITATIONS
55	Nanoarchitectonics beyond Selfâ€Assembly: Challenges to Create Bioâ€Like Hierarchic Organization. Angewandte Chemie - International Edition, 2020, 59, 15424-15446.	7.2	176
56	Layer-by-Layer Assembly of Alternate Protein/Polyion Ultrathin Films. Chemistry Letters, 1994, 23, 2323-2326.	0.7	172
57	Thinâ€Filmâ€Based Nanoarchitectures for Soft Matter: Controlled Assemblies into Twoâ€Dimensional Worlds. Small, 2011, 7, 1288-1308.	5.2	169
58	Mechanical Control of Enantioselectivity of Amino Acid Recognition by Cholesterol-Armed Cyclen Monolayer at the Air-Water Interface. Journal of the American Chemical Society, 2006, 128, 14478-14479.	6.6	166
59	MOF-derived Nanoporous Carbon as Intracellular Drug Delivery Carriers. Chemistry Letters, 2014, 43, 717-719.	0.7	165
60	Catalytic nanoarchitectonics for environmentally compatible energy generation. Materials Today, 2016, 19, 12-18.	8.3	163
61	Hierarchical supramolecular fullerene architectures with controlled dimensionality. Chemical Communications, 2005, , 5982.	2.2	156
62	Materials nanoarchitectonics for environmental remediation and sensing. Journal of Materials Chemistry, 2012, 22, 2369-2377.	6.7	156
63	The Past and the Future of Langmuir and Langmuir–Blodgett Films. Chemical Reviews, 2022, 122, 6459-6513.	23.0	155
64	All-Metal Layer-by-Layer Films: Bimetallic Alternate Layers with Accessible Mesopores for Enhanced Electrocatalysis. Journal of the American Chemical Society, 2012, 134, 10819-10821.	6.6	154
65	Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems. Journal of Colloid and Interface Science, 2007, 311, 276-284.	5.0	151
66	Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on― cyanide probes. Chemical Communications, 2013, 49, 10136.	2.2	151
67	Supramolecular Chiral Nanoarchitectonics. Advanced Materials, 2020, 32, e1905657.	11.1	150
68	Nanoarchitectonics for Hybrid and Related Materials for Bioâ€Oriented Applications. Advanced Functional Materials, 2018, 28, 1702905.	7.8	149
69	Photocatalytic Water Splitting under Visible Light by Mixed-Valence Sn ₃ O ₄ . ACS Applied Materials & Interfaces, 2014, 6, 3790-3793.	4.0	148
70	Two-dimensional nanoarchitectonics based on self-assembly. Advances in Colloid and Interface Science, 2010, 154, 20-29.	7.0	146
71	Langmuir-Blodgett films of an enzyme-lipid complex for sensor membranes. Langmuir, 1988, 4, 1373-1375.	1.6	145
72	A Condensable Amphiphile with a Cleavable Tail as a "Lizard―Template for the Solâ^'Gel Synthesis of Functionalized Mesoporous Silica. Journal of the American Chemical Society, 2004, 126, 988-989.	6.6	145

#	Article	IF	CITATIONS
73	Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. Journal of Materials Chemistry, 2005, 15, 5122.	6.7	144
74	Electrochemical-Coupling Layer-by-Layer (ECC–LbL) Assembly. Journal of the American Chemical Society, 2011, 133, 7348-7351.	6.6	144
75	Layer-by-Layer Films of Dual-Pore Carbon Capsules with Designable Selectivity of Gas Adsorption. Journal of the American Chemical Society, 2009, 131, 4220-4221.	6.6	143
76	Don't Forget Langmuir–Blodgett Films 2020: Interfacial Nanoarchitectonics with Molecules, Materials, and Living Objects. Langmuir, 2020, 36, 7158-7180.	1.6	143
77	Preparation and Characterization of a Novel Organic–Inorganic Nanohybrid "Cerasome―Formed with a Liposomal Membrane and Silicate Surface. Chemistry - A European Journal, 2007, 13, 5272-5281.	1.7	142
78	Stimuli-Free Auto-Modulated Material Release from Mesoporous Nanocompartment Films. Journal of the American Chemical Society, 2008, 130, 2376-2377.	6.6	142
79	Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Airâ°'Water Interface. Journal of the American Chemical Society, 2000, 122, 7835-7836.	6.6	141
80	Fullerene Crystals with Bimodal Pore Architectures Consisting of Macropores and Mesopores. Journal of the American Chemical Society, 2013, 135, 586-589.	6.6	141
81	A Layered Mesoporous Carbon Sensor Based on Nanoporeâ€Filling Cooperative Adsorption in the Liquid Phase. Angewandte Chemie - International Edition, 2008, 47, 7254-7257.	7.2	140
82	A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. Journal of Materials Chemistry B, 2017, 5, 8854-8864.	2.9	139
83	Polymeric Micelle Assembly for Preparation of Large-Sized Mesoporous Metal Oxides with Various Compositions. Langmuir, 2014, 30, 651-659.	1.6	138
84	Hierarchically Structured Fullerene C ₇₀ Cube for Sensing Volatile Aromatic Solvent Vapors. ACS Nano, 2016, 10, 6631-6637.	7.3	137
85	One-Pot Separation of Tea Components through Selective Adsorption on Pore-Engineered Nanocarbon, Carbon Nanocage. Journal of the American Chemical Society, 2007, 129, 11022-11023.	6.6	134
86	Flowerâ€Shaped Supramolecular Assemblies: Hierarchical Organization of a Fullerene Bearing Long Aliphatic Chains. Small, 2007, 3, 2019-2023.	5.2	134
87	Piezoluminescence at the Airâ^'Water Interface through Dynamic Molecular Recognition Driven by Lateral Pressure Application. Langmuir, 2005, 21, 976-981.	1.6	131
88	Room Temperature Liquid Fullerenes:Â An Uncommon Morphology of C60Derivatives. Journal of the American Chemical Society, 2006, 128, 10384-10385.	6.6	131
89	A Polymerâ€Electrolyteâ€Based Atomic Switch. Advanced Functional Materials, 2011, 21, 93-99	7.8	130
90	Bioinspired nanoarchitectonics as emerging drug delivery systems. New Journal of Chemistry, 2014, 38, 5149-5163.	1.4	128

#	Article	IF	CITATIONS
91	Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials, 2007, 19, 4367-4372.	3.2	127
92	Perfectly Straight Nanowires of Fullerenes Bearing Long Alkyl Chains on Graphite. Journal of the American Chemical Society, 2006, 128, 6328-6329.	6.6	123
93	Preparation of Organic-Inorganic Hybrid Vesicle "Cerasome―Derived from Artificial Lipid with Alkoxysilyl Head. Chemistry Letters, 1999, 28, 661-662.	0.7	122
94	Layer-by-Layer Self-Assembling of Liposomal Nanohybrid "Cerasome―on Substrates. Langmuir, 2002, 18, 6709-6711.	1.6	122
95	Immobilization of Biomaterials to Nano-Assembled Films (Self-Assembled Monolayers,) Tj ETQq1 1 0.784314 rgBT Nanoscience and Nanotechnology, 2006, 6, 2278-2301.	/Overlock 0.9	10 Tf 50 58 122
96	Soft 2D nanoarchitectonics. NPG Asia Materials, 2018, 10, 90-106.	3.8	121
97	Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Largeâ€6cale Tissue Engineering. Advanced Materials, 2015, 27, 4020-4026.	11.1	119
98	Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO ₂ ternary nanocomposites with electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 18480-18487.	5.2	118
99	Layer-by-layer architectures of concanavalin A by means of electrostatic and biospecific interactions. Journal of the Chemical Society Chemical Communications, 1995, , 2313.	2.0	116
100	Nanoporous Carbon Tubes from Fullerene Crystals as the Ï€â€Electron Carbon Source. Angewandte Chemie - International Edition, 2015, 54, 951-955.	7.2	116
101	Mechanical Tuning of Molecular Recognition To Discriminate the Single-Methyl-Group Difference between Thymine and Uracil. Journal of the American Chemical Society, 2010, 132, 12868-12870.	6.6	113
102	Layerâ€by‣ayer Assembly: Recent Progress from Layered Assemblies to Layered Nanoarchitectonics. Chemistry - an Asian Journal, 2019, 14, 2553-2566.	1.7	113
103	Molecular Recognition of Aqueous Dipeptides at Multiple Hydrogen-Bonding Sites of Mixed Peptide Monolayers. Journal of the American Chemical Society, 1996, 118, 9545-9551.	6.6	112
104	Vortex-Aligned Fullerene Nanowhiskers as a Scaffold for Orienting Cell Growth. ACS Applied Materials & Interfaces, 2015, 7, 15667-15673.	4.0	112
105	Theoretical Study of Intermolecular Interaction at the Lipidâ^'Water Interface. 1. Quantum Chemical Analysis Using a Reaction Field Theory. Journal of Physical Chemistry B, 1997, 101, 4810-4816.	1.2	111
106	Putting the â€~N' in ACENE: Pyrazinacenes and their structural relatives. Organic and Biomolecular Chemistry, 2011, 9, 5005.	1.5	111
107	Langmuir Nanoarchitectonics from Basic to Frontier. Langmuir, 2019, 35, 3585-3599.	1.6	111
108	Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. Journal of Porous Materials, 2006, 13, 379-383.	1.3	107

#	Article	IF	CITATIONS
109	Layer-by-layer assembly for drug delivery and related applications. Expert Opinion on Drug Delivery, 2011, 8, 633-644.	2.4	107
110	Biomaterials and Biofunctionality in Layered Macromolecular Assemblies. Macromolecular Bioscience, 2008, 8, 981-990.	2.1	106
111	NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nature Communications, 2013, 4, 2188.	5.8	103
112	Formation of metal clusters in halloysite clay nanotubes. Science and Technology of Advanced Materials, 2017, 18, 147-151.	2.8	102
113	Selfâ€Construction from 2D to 3D: Oneâ€Pot Layerâ€byâ€Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. Angewandte Chemie - International Edition, 2016, 55, 8426-8430.	7.2	101
114	Nanoarchitectonics: a navigator from materials to life. Materials Chemistry Frontiers, 2017, 1, 208-211.	3.2	100
115	Mechanochemical Tuning of the Binaphthyl Conformation at the Air–Water Interface. Angewandte Chemie - International Edition, 2015, 54, 8988-8991.	7.2	97
116	Molecular Recognition of Aqueous Dipeptides by Noncovalently Aligned Oligoglycine Units at the Air/Water Interface. Journal of the American Chemical Society, 1995, 117, 11833-11838.	6.6	95
117	Nanoarchitectonics: Pioneering a New Paradigm for Nanotechnology in Materials Development. Advanced Materials, 2012, 24, 150-151.	11.1	95
118	Nanoarchitectonics for carbon-material-based sensors. Analyst, The, 2016, 141, 2629-2638.	1.7	95
119	Anion-Complexation-Induced Stabilization of Charge Separation. Journal of the American Chemical Society, 2009, 131, 16138-16146.	6.6	93
120	Block-Copolymer-Nanowires with Nanosized Domain Segregation and High Charge Mobilities as Stacked p/n Heterojunction Arrays for Repeatable Photocurrent Switching. Journal of the American Chemical Society, 2009, 131, 18030-18031.	6.6	93
121	Chiral Sensing by Nonchiral Tetrapyrroles. Accounts of Chemical Research, 2015, 48, 521-529.	7.6	93
122	Tunable, Functional Carbon Spheres Derived from Rapid Synthesis of Resorcinol-Formaldehyde Resins. ACS Applied Materials & Interfaces, 2014, 6, 10649-10655.	4.0	91
123	Theoretical Study of Intermolecular Interaction at the Lipidâ^'Water Interface. 2. Analysis Based on the Poissonâ^'Boltzmann Equation. Journal of Physical Chemistry B, 1997, 101, 4817-4825.	1.2	90
124	A Bottom-Up Approach toward Fabrication of Ultrathin PbS Sheets. Nano Letters, 2013, 13, 409-415.	4.5	90
125	Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A, 2013, 1, 2913.	5.2	90
126	Open-Mouthed Metallic Microcapsules: Exploring Performance Improvements at Agglomeration-Free Interiors. Journal of the American Chemical Society, 2010, 132, 14415-14417.	6.6	89

#	Article	IF	CITATIONS
127	Highly Crystalline and Conductive Nitrogenâ€Doped Mesoporous Carbon with Graphitic Walls and Its Electrochemical Performance. Chemistry - A European Journal, 2011, 17, 3390-3397.	1.7	89
128	Molecular Patterning of a Guanidinium/Orotate Mixed Monolayer through Molecular Recognition with Flavin Adenine Dinucleotide. Langmuir, 1997, 13, 519-524.	1.6	88
129	Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices. Advances in Polymer Science, 2010, , 51-87.	0.4	88
130	Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced Electrochemical Supercapacitance. Bulletin of the Chemical Society of Japan, 2019, 92, 521-528.	2.0	88
131	Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. Bulletin of the Chemical Society of Japan, 2021, 94, 839-859.	2.0	88
132	Detection of the phase transition of Langmuir-Blodgett films on a quartz-crystal microbalance in an aqueous phase. Journal of the American Chemical Society, 1989, 111, 9190-9194.	6.6	87
133	Aligned 1-D Nanorods of a π-Gelator Exhibit Molecular Orientation and Excitation Energy Transport Different from Entangled Fiber Networks. Journal of the American Chemical Society, 2014, 136, 8548-8551.	6.6	86
134	Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 12654-12660.	5.2	86
135	Assemblies of Biomaterials in Mesoporous Media. Journal of Nanoscience and Nanotechnology, 2006, 6, 1510-1532.	0.9	85
136	Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. Soft Matter, 2009, 5, 3562.	1.2	84
137	Hierarchic Nanostructure for Autoâ€Modulation of Material Release: Mesoporous Nanocompartment Films. Advanced Functional Materials, 2009, 19, 1792-1799.	7.8	83
138	Superstructures and superhydrophobic property in hierarchical organized architectures of fullerenes bearing long alkyl tails. Journal of Materials Chemistry, 2010, 20, 1253-1260.	6.7	83
139	Coordination nanoarchitectonics at interfaces between supramolecular and materials chemistry. Coordination Chemistry Reviews, 2016, 320-321, 139-152.	9.5	82
140	Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth. ACS Nano, 2016, 10, 8796-8802.	7.3	82
141	Self-assembled microstructures of functional molecules. Current Opinion in Colloid and Interface Science, 2007, 12, 106-120.	3.4	81
142	Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions. Chemistry of Materials, 2014, 26, 519-532.	3.2	81
143	Mesoporous graphitic carbon microtubes derived from fullerene C ₇₀ tubes as a high performance electrode material for advanced supercapacitors. Journal of Materials Chemistry A, 2016, 4, 13899-13906.	5.2	81
144	Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?. Advanced Materials, 2022, 34, e2107212.	11.1	81

#	Article	IF	CITATIONS
145	Foaming Properties of Monoglycerol Fatty Acid Esters in Nonpolar Oil Systems. Langmuir, 2006, 22, 8337-8345.	1.6	80
146	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Dimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie - International Edition, 2018, 57, 9679-9683.	7.2	80
147	Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate. Advanced Materials, 2020, 32, e1905942.	11.1	80
148	Lowâ€Temperature Remediation of NO Catalyzed by Interleaved CuO Nanoplates. Advanced Materials, 2014, 26, 4481-4485.	11.1	79
149	Dynamic Breathing of CO ₂ by Hydrotalcite. Journal of the American Chemical Society, 2013, 135, 18040-18043.	6.6	77
150	Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation. Journal of Materials Chemistry A, 2015, 3, 6614-6619.	5.2	77
151	Atom/molecular nanoarchitectonics for devices and related applications. Nano Today, 2019, 28, 100762.	6.2	77
152	Materials self-assembly and fabrication in confined spaces. Journal of Materials Chemistry, 2012, 22, 10389.	6.7	75
153	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
154	There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Physical Chemistry Chemical Physics, 2022, 24, 4097-4115.	1.3	75
155	Nuclear Magnetic Resonance Signaling of Molecular Chiral Information Using an Achiral Reagent. Journal of the American Chemical Society, 2009, 131, 9494-9495.	6.6	74
156	Shape-Dependent Confinement in Ultrasmall Zero-, One-, and Two-Dimensional PbS Nanostructures. Journal of the American Chemical Society, 2009, 131, 11282-11283.	6.6	73
157	Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications. Journal of Materials Chemistry C, 2013, 1, 2080.	2.7	73
158	Cobalt Oxide/Reduced Graphene Oxide Composite with Enhanced Electrochemical Supercapacitance Performance. Bulletin of the Chemical Society of Japan, 2017, 90, 955-962.	2.0	72
159	Phase Behavior of Monoglycerol Fatty Acid Esters in Nonpolar Oils:Â Reverse Rodlike Micelles at Elevated Temperatures. Journal of Physical Chemistry B, 2006, 110, 12266-12273.	1.2	70
160	Phase Behavior of Diglycerol Fatty Acid Estersâ^'Nonpolar Oil Systems. Langmuir, 2006, 22, 1449-1454.	1.6	70
161	A Mechanically Controlled Indicator Displacement Assay. Angewandte Chemie - International Edition, 2012, 51, 9643-9646.	7.2	70
162	Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air–water interface. Physical Chemistry Chemical Physics, 2016, 18, 12576-12581.	1.3	70

#	Article	IF	CITATIONS
163	Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor. ACS Applied Materials & Interfaces, 2017, 9, 18986-18993.	4.0	69
164	Rapid Exchange between Atmospheric CO ₂ and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide. ACS Applied Materials & Interfaces, 2014, 6, 18352-18359.	4.0	68
165	Intentional Closing/Opening of "Hole-in-Cube―Fullerene Crystals with Microscopic Recognition Properties. ACS Nano, 2017, 11, 7790-7796.	7.3	68
166	Effect of Melamineâ€Amphiphile Structure on the Extent of Twoâ€Dimensional Hydrogenâ€Bonded Networks Incorporating Barbituric Acid. Chemistry - A European Journal, 1997, 3, 1077-1082.	1.7	67
167	In Situ Electrochemical Deposition and Doping of C ₆₀ Films Applied to Highâ€Performance Inverted Organic Photovoltaics. Advanced Materials, 2012, 24, 5727-5731.	11.1	67
168	Surfactant-Assisted Assembly of Fullerene (C ₆₀) Nanorods and Nanotubes Formed at a Liquid–Liquid Interface. Langmuir, 2013, 29, 7195-7202.	1.6	67
169	Interfacial Nanoarchitectonics: Lateral and Vertical, Static and Dynamic. Langmuir, 2013, 29, 8459-8471.	1.6	67
170	Composite Nanoarchitectonics for Ternary Systems of Reduced Graphene Oxide/Carbon Nanotubes/Nickel Oxide with Enhanced Electrochemical Capacitor Performance. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 267-274.	1.9	67
171	Multisite Recognition of Aqueous Dipeptides by Oligoglycine Arrays Mixed with Guanidinium and Other Receptor Units at the Airâ^'Water Interface. Langmuir, 1999, 15, 3875-3885.	1.6	66
172	Pyrazinacenes: Aza Analogues of Acenes. Journal of Organic Chemistry, 2009, 74, 8914-8923.	1.7	66
173	Demonstration of Ultrarapid Interfacial Formation of 1D Fullerene Nanorods with Photovoltaic Properties. ACS Applied Materials & Interfaces, 2014, 6, 15597-15603.	4.0	66
174	Nanoarchitectonics from Atom to Life. Chemistry - an Asian Journal, 2020, 15, 718-728.	1.7	66
175	Soft Nanoarchitectonics for Enantioselective Biosensing. Accounts of Chemical Research, 2020, 53, 644-653.	7.6	65
176	Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. Bulletin of the Chemical Society of Japan, 2022, 95, 774-795.	2.0	65
177	Wormlike micelles in Tween-80/CmEO3 mixed nonionic surfactant systems in aqueous media. Journal of Colloid and Interface Science, 2007, 312, 489-497.	5.0	64
178	Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems. Journal of Colloid and Interface Science, 2008, 322, 596-604.	5.0	64
179	Self-Assembly: From Amphiphiles to Chromophores and Beyond. Molecules, 2014, 19, 8589-8609.	1.7	64
180	Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Science and Technology of Advanced Materials, 2012, 13, 053001.	2.8	63

#	Article	IF	CITATIONS
181	Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous and Mesoporous Materials, 2021, 312, 110757.	2.2	63
182	Langmuir monolayers of a cholesterol-armed cyclen complex that can control enantioselectivity of amino acid recognition by surface pressure. Physical Chemistry Chemical Physics, 2011, 13, 4895.	1.3	62
183	Nanoporous Carbon Sensor with Cage-in-Fiber Structure: Highly Selective Aniline Adsorbent toward Cancer Risk Management. ACS Applied Materials & Interfaces, 2013, 5, 2930-2934.	4.0	62
184	Alcohol-induced decomposition of Olmstead's crystalline Ag(<scp>i</scp>)–fullerene heteronanostructure yields â€~bucky cubes'. Journal of Materials Chemistry C, 2013, 1, 1174-1181.	2.7	61
185	Selfâ€Assembled Fullerene Nanostructures: Synthesis and Applications. Advanced Functional Materials, 2022, 32, 2106924.	7.8	61
186	Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS ₂ co-catalyst assembled CdS QDs/TiO ₂ photoelectrode. Chemical Communications, 2015, 51, 522-525.	2.2	60
187	Control of nano/molecular systems by application of macroscopic mechanical stimuli. Chemical Science, 2011, 2, 195-203.	3.7	59
188	Research Update: Mesoporous sensor nanoarchitectonics. APL Materials, 2014, 2, .	2.2	59
189	Mesoporous fullerene C ₇₀ cubes with highly crystalline frameworks and unusually enhanced photoluminescence properties. Materials Horizons, 2018, 5, 285-290.	6.4	59
190	Shell-adjustable hollow †soft' silica spheres as a support for gold nanoparticles. Journal of Materials Chemistry A, 2013, 1, 3600.	5.2	58
191	Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework. Nature Communications, 2016, 7, 11564.	5.8	58
192	Highly Networked Capsular Silica–Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. ACS Applied Materials & Interfaces, 2017, 9, 9945-9954.	4.0	58
193	Modulation of Mesenchymal Stem Cells Mechanosensing at Fluid Interfaces by Tailored Selfâ€Assembled Protein Monolayers. Small, 2019, 15, e1804640.	5.2	58
194	Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Science, 2021, 1, 2000032.	5.8	58
195	Nanoporous Activated Carbons Derived from Agro-Waste Corncob for Enhanced Electrochemical and Sensing Performance. Bulletin of the Chemical Society of Japan, 2015, 88, 1108-1115.	2.0	57
196	Visual Detection of Cesium Ions in Domestic Water Supply or Seawater using a Nano-optode. Bulletin of the Chemical Society of Japan, 2017, 90, 678-683.	2.0	57
197	Engineered functionalized 2D nanoarchitectures for stimuli-responsive drug delivery. Materials Horizons, 2020, 7, 455-469.	6.4	57
198	Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 44458-44465.	4.0	57

#	Article	IF	CITATIONS
199	Aqueous foam stabilized by dispersed surfactant solid and lamellar liquid crystalline phase. Journal of Colloid and Interface Science, 2006, 301, 274-281.	5.0	56
200	Nanoarchitectonics. Japanese Journal of Applied Physics, 2016, 55, 1102A6.	0.8	56
201	Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Physical Chemistry Chemical Physics, 2017, 19, 23658-23676.	1.3	56
202	Template-Assisted Nano-Patterning: From the Submicron Scale to the Submolecular Level. Journal of Nanoscience and Nanotechnology, 2004, 4, 23-34.	0.9	55
203	Flake‧hell Capsules: Adjustable Inorganic Structures. Small, 2012, 8, 2345-2349.	5.2	55
204	Interfaces Working for Biology: Solving Biological Mysteries and Opening Up Future Nanoarchitectonics. ChemNanoMat, 2016, 2, 333-343.	1.5	55
205	Conformation Manipulation and Motion of a Double Paddle Molecule on an Au(111) Surface. ACS Nano, 2017, 11, 10357-10365.	7.3	55
206	Supramolecular Templates for Nanoflake–Metal Surfaces. Chemistry - A European Journal, 2009, 15, 2763-2767.	1.7	54
207	Evolution of molecular machines: from solution to soft matter interface. Soft Matter, 2012, 8, 15-20.	1.2	54
208	Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. Nano Letters, 2015, 15, 4793-4798.	4.5	54
209	Suppression of Myogenic Differentiation of Mammalian Cells Caused by Fluidity of a Liquid–Liquid Interface. ACS Applied Materials & Interfaces, 2017, 9, 30553-30560.	4.0	54
210	Recognition of aqueous flavin mononucleotide on the surface of binary monolayers of guanidinium and melamine amphiphiles. Journal of Materials Chemistry, 1997, 7, 1155-1161.	6.7	53
211	Aqueous foams stabilized by n-dodecyl-β-d-maltoside, hexaethyleneglycol monododecyl ether, and their 1 : 1 mixture. Soft Matter, 2009, 5, 3070.	1.2	53
212	How molecules accommodate a 2D crystal lattice mismatch: an unusual â€~mixed' conformation of tetraphenylporphyrin. Physical Chemistry Chemical Physics, 2006, 8, 5034-5037.	1.3	52
213	Foam stabilized by dispersed surfactant solid and lamellar liquid crystal in aqueous systems of diglycerol fatty acid esters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293, 262-271.	2.3	52
214	Multiâ€Ðimensional Control of Surfactantâ€Guided Assemblies of Quantum Gold Particles. Advanced Materials, 2008, 20, 4027-4032.	11.1	52
215	Structure of Nonionic Surfactant (Glycerol α-Monomyristate) Micelles in Organic Solvents: A SAXS Study. Journal of Physical Chemistry B, 2009, 113, 6290-6298.	1.2	52
216	Multi-site Recognition of Flavin Adenine Dinucleotide by Mixed Monolayers on Water. Chemistry Letters, 1995, 24, 701-702.	0.7	51

#	Article	IF	CITATIONS
217	Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. Journal of Carbon Research, 2019, 5, 10.	1.4	51
218	The evolution of molecular machines through interfacial nanoarchitectonics: from toys to tools. Chemical Science, 2020, 11, 10594-10604.	3.7	51
219	Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. Nanomaterials, 2020, 10, 639.	1.9	51
220	Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system. Journal of Colloid and Interface Science, 2008, 328, 172-179.	5.0	50
221	Naked-Eye Discrimination of Methanol from Ethanol Using Composite Film of Oxoporphyrinogen and Layered Double Hydroxide. ACS Applied Materials & Interfaces, 2013, 5, 5927-5930.	4.0	50
222	Templateâ€Free Fabrication of Mesoporous Alumina Nanospheres Using Postâ€5ynthesis Waterâ€Ethanol Treatment of Monodispersed Aluminium Glycerate Nanospheres for Molybdenum Adsorption. Small, 2018, 14, e1800474.	5.2	50
223	Catalysis of a Peptidic Micellar Assembly Covalently Immobilized within Mesoporous Silica Channels: Importance of Amphiphilic Spatial Design. Chemistry - A European Journal, 2007, 13, 1731-1736.	1.7	49
224	Viscoelastic Wormlike Micelles of Long Polyoxyethylene Chain Phytosterol with Lipophilic Nonionic Surfactant in Aqueous Solution. Journal of Physical Chemistry B, 2009, 113, 3043-3050.	1.2	49
225	Langmuir Nanoarchitectonics: One-Touch Fabrication of Regularly Sized Nanodisks at the Air–Water Interface. Langmuir, 2013, 29, 7239-7248.	1.6	49
226	Mesoporous Alumina as an Effective Adsorbent for Molybdenum (Mo) toward Instant Production of Radioisotope for Medical Use. Bulletin of the Chemical Society of Japan, 2017, 90, 1174-1179.	2.0	49
227	Materials Nanoarchitectonics as Cell Regulators. ChemNanoMat, 2019, 5, 692-702.	1.5	49
228	Modulated Supramolecular Assemblies Composed of Tripeptide Derivatives:Â Formation of Micrometer-Scale Rods, Nanometer-Size Needles, and Regular Patterns with Molecular-Level Flatness from the Same Compound. Langmuir, 2000, 16, 4929-4939.	1.6	48
229	Charge-Free Reverse Wormlike Micelles in Nonaqueous Media. Langmuir, 2011, 27, 2340-2348.	1.6	48
230	Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. Microporous and Mesoporous Materials, 2019, 274, 251-256.	2.2	47
231	Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns Having Microscopic Recognition Properties. ACS Nano, 2019, 13, 14005-14012.	7.3	47
232	Thin Film Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 466-479.	1.9	46
233	Surfactant-Triggered Nanoarchitectonics of Fullerene C ₆₀ Crystals at a Liquid–Liquid Interface. Langmuir, 2016, 32, 12511-12519.	1.6	46
234	Mechanically Induced Opening–Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. ChemPhysChem, 2017, 18, 1470-1474.	1.0	46

#	Article	IF	CITATIONS
235	Syntheses and Interfacial Hydrogen-Bonded Network of Hexaalkyl Tris(Melamine) Amphiphiles. Langmuir, 1997, 13, 5426-5432.	1.6	45
236	Shape, Size, and Structural Control of Reverse Micelles in Diglycerol Monomyristate Nonionic Surfactant System. Journal of Physical Chemistry B, 2007, 111, 1664-1671.	1.2	45
237	Operation of micro and molecular machines: a new concept with its origins in interface science. Physical Chemistry Chemical Physics, 2011, 13, 4802.	1.3	45
238	BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. Journal of Solid State Chemistry, 2019, 269, 409-418.	1.4	45
239	By what means should nanoscaled materials be constructed: molecule, medium, or human?. Nanoscale, 2010, 2, 198-214.	2.8	44
240	Enhanced Supercapacitor Performance of Nâ€Doped Mesoporous Carbons Prepared from a Gelatin Biomolecule. ChemPhysChem, 2013, 14, 1563-1569.	1.0	44
241	Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C ₁ /C ₂ alcohol discrimination. Science and Technology of Advanced Materials, 2016, 17, 483-492.	2.8	44
242	Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance. Scientific Reports, 2017, 7, 41773.	1.6	44
243	Regulating the stability of 2D crystal structures using an oxidation state-dependent molecular conformation. Chemical Communications, 2006, , 2320.	2.2	43
244	Promoted C–C bond cleavage over intermetallic TaPt ₃ catalyst toward low-temperature energy extraction from ethanol. Energy and Environmental Science, 2015, 8, 1685-1689.	15.6	43
245	From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. ACS Applied Materials & Interfaces, 2016, 8, 31231-31238.	4.0	43
246	Self-Assembly Structures of a Phenol-Substituted Porphyrin in the Solid State:  Hydrogen Bonding, Kagomé Lattice, and Defect Tolerance. Journal of Physical Chemistry C, 2007, 111, 16174-16180.	1.5	42
247	Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin. Journal of Materials Chemistry A, 2016, 4, 5737-5744.	5.2	42
248	Neural differentiation on aligned fullerene C ₆₀ nanowhiskers. Chemical Communications, 2017, 53, 11024-11027.	2.2	42
249	Nano Trek Beyond: Driving Nanocars/Molecular Machines at Interfaces. Chemistry - an Asian Journal, 2018, 13, 1266-1278.	1.7	42
250	Molybdenum Adsorption Properties of Alumina-Embedded Mesoporous Silica for Medical Radioisotope Production. Bulletin of the Chemical Society of Japan, 2018, 91, 195-200.	2.0	42
251	Nonaqueous foam with outstanding stability in diglycerol monomyristate/olive oil system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353, 157-165.	2.3	41
252	Structure of Polyglycerol Oleic Acid Ester Nonionic Surfactant Reverse Micelles in Decane: Growth Control by Headgroup Size. Langmuir, 2010, 26, 7015-7024.	1.6	41

#	Article	IF	CITATIONS
253	Monolayers at airâ€water interfaces: from originsâ€ofâ€life to nanotechnology. Chemical Record, 2011, 11, 199-211.	2.9	41
254	Nanoarchitectonics to prepare practically useful artificial enzymes. Molecular Catalysis, 2019, 475, 110492.	1.0	41
255	Large-Area Aligned Fullerene Nanocrystal Scaffolds as Culture Substrates for Enhancing Mesenchymal Stem Cell Self-Renewal and Multipotency. ACS Applied Nano Materials, 2020, 3, 6497-6506.	2.4	41
256	A Theoretical Interpretation of Remarkable Enhancement of Intermolecular Binding at the Lipid-Water Interface. Chemistry Letters, 1995, 24, 1001-1002.	0.7	40
257	Two-dimensional Molecular Patterning through Molecular Recognition. Chemistry Letters, 1996, 25, 411-412.	0.7	40
258	Wormlike Micelles in Mixed Surfactant Systems:  Effect of Cosolvents. Journal of Physical Chemistry B, 2007, 111, 10438-10447.	1.2	40
259	Nanomosaic:  Formation of Nanodomains Confined in a Two-Dimensional Molecular Plane. Langmuir, 2008, 24, 1682-1685.	1.6	40
260	Glycerol effects on the formation and rheology of cubic phase and related gel emulsion. Journal of Colloid and Interface Science, 2009, 329, 366-371.	5.0	40
261	Viscoelastic Wormlike Micelles in Mixed Nonionic Fluorocarbon Surfactants and Structural Transition Induced by Oils. Journal of Physical Chemistry B, 2009, 113, 1615-1622.	1.2	40
262	Langmuir Films of Unusual Components. Journal of Nanoscience and Nanotechnology, 2009, 9, 3-18.	0.9	40
263	Antibacterial Effect of Silver-Incorporated Flake-Shell Nanoparticles under Dual-Modality. ACS Applied Materials & Interfaces, 2016, 8, 18922-18929.	4.0	40
264	Driving nanocars and nanomachines at interfaces: From concept of nanoarchitectonics to actual use in world wide race and hand operation. Japanese Journal of Applied Physics, 2016, 55, 1102A2.	0.8	40
265	Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chemistry - an Asian Journal, 2018, 13, 3366-3377.	1.7	40
266	Macaroni Fullerene Crystals-Derived Mesoporous Carbon Tubes as a High Rate Performance Supercapacitor Electrode Material. Bulletin of the Chemical Society of Japan, 2021, 94, 1502-1509.	2.0	40
267	Small-angle X-ray scattering (SAXS) study on nonionic fluorinated micelles in aqueous system. Journal of Colloid and Interface Science, 2007, 316, 815-824.	5.0	39
268	Real time self-assembly and reassembly of molecular nanowires of trigeminal amphiphile porphyrins. Chemical Communications, 2011, 47, 2285-2287.	2.2	39
269	Rheology of wormlike micelles in aqueous systems of a mixed amino acid-based anionic surfactant and cationic surfactant. Colloid and Polymer Science, 2009, 287, 1305-1315.	1.0	38
270	Tunable Parameters for the Structural Control of Reverse Micelles in Glycerol Monoisostearate/Oil Systems: A SAXS Study. Langmuir, 2009, 25, 4435-4442.	1.6	38

#	Article	IF	CITATIONS
271	Simultaneous Electropolymerization and Electro-Click Functionalization for Highly Versatile Surface Platforms. ACS Nano, 2014, 8, 5240-5248.	7.3	38
272	Molecular rotors confined at an ordered 2D interface. Physical Chemistry Chemical Physics, 2018, 20, 3073-3078.	1.3	38
273	Ratiometric immunoassays built from synergistic photonic absorption of size-diverse semiconducting MoS2 nanostructures. Materials Horizons, 2019, 6, 563-570.	6.4	38
274	Bioactive flake–shell capsules: soft silica nanoparticles for efficient enzyme immobilization. Journal of Materials Chemistry B, 2013, 1, 3248.	2.9	37
275	Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent. Chemical Communications, 2017, 53, 236-239.	2.2	37
276	Selective CO ₂ Capture and High Proton Conductivity of a Functional Starâ€ofâ€Đavid Catenane Metal–Organic Framework. Advanced Materials, 2017, 29, 1703301.	11.1	37
277	Review of advanced sensor devices employing nanoarchitectonics concepts. Beilstein Journal of Nanotechnology, 2019, 10, 2014-2030.	1.5	37
278	Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. Sensors, 2019, 19, 267.	2.1	37
279	100 °C-Langmuir–Blodgett Method for Fabricating Highly Oriented, Ultrathin Films of Polymeric Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 56522-56529.	4.0	37
280	Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Science and Technology of Advanced Materials, 2022, 23, 199-224.	2.8	37
281	In situ weighing of water-deposited Langmuir–Blodgett films on a piezoelectric quartz plate. Journal of the Chemical Society Chemical Communications, 1987, , 1535-1537.	2.0	36
282	Intrinsic Parameters for the Structure Control of Nonionic Reverse Micelles in Styrene: SAXS and Rheometry Studies. Langmuir, 2011, 27, 5862-5873.	1.6	36
283	Micrometer-level naked-eye detection of caesium particulates in the solid state. Science and Technology of Advanced Materials, 2013, 14, 015002.	2.8	36
284	Phase Behavior and Self-Organized Structures of Diglycerol Monolaurate in Different Nonpolar Organic Solvents. Langmuir, 2007, 23, 6606-6613.	1.6	35
285	Nanoarchitectonics of Molecular Aggregates: Science and Technology. Journal of Nanoscience and Nanotechnology, 2014, 14, 390-401.	0.9	35
286	Commentary: Nanoarchitectonics— Think about NANO again. APL Materials, 2015, 3, 061001.	2.2	35
287	Monitoring Fluorescence Response of Amphiphilic Flapping Molecules in Compressed Monolayers at the Air–Water Interface. Chemistry - an Asian Journal, 2019, 14, 2869-2876.	1.7	35
288	Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells. Applied Surface Science, 2019, 487, 211-217.	3.1	35

#	Article	IF	CITATIONS
289	High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. Nanomaterials, 2020, 10, 728.	1.9	35
290	Effect of Lipophilic Tail Architecture and Solvent Engineering on the Structure of Trehalose-Based Nonionic Surfactant Reverse Micelles. Journal of Physical Chemistry B, 2010, 114, 12008-12017.	1.2	34
291	Molecular cavity nanoarchitectonics for biomedical application and mechanical cavity manipulation. CrystEngComm, 2016, 18, 4890-4899.	1.3	34
292	Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. ACS Nano, 2019, 13, 2410-2419.	7.3	34
293	Superâ€6table Nonaqueous Foams in Diglycerol Fatty Acid Esters—Non Polar Oil Systems. Journal of Dispersion Science and Technology, 2007, 28, 133-142.	1.3	33
294	Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals. Nanotechnology, 2015, 26, 204002.	1.3	33
295	BODIPY based hyperbranched conjugated polymers for detecting organic vapors. Polymer Chemistry, 2016, 7, 4213-4225.	1.9	33
296	Vanadium sulfide/reduced graphene oxide composite with enhanced supercapacitance performance. Journal of the Taiwan Institute of Chemical Engineers, 2018, 92, 72-79.	2.7	33
297	Silica-based gene reverse transfection: an upright nanosheet network for promoted DNA delivery to cells. Chemical Communications, 2012, 48, 8496.	2.2	32
298	Nanoporous Activated Carbon Derived from Lapsi (<i>Choerospondias Axillaris</i>) Seed Stone for the Removal of Arsenic from Water. Journal of Nanoscience and Nanotechnology, 2012, 12, 7002-7009.	0.9	32
299	Intracellular Imaging of Cesium Distribution in <i>Arabidopsis</i> Using Cesium Green. ACS Applied Materials & Interfaces, 2014, 6, 8208-8211.	4.0	32
300	Atomic architectonics, nanoarchitectonics and microarchitectonics for strategies to make junk materials work as precious catalysts. CrystEngComm, 2016, 18, 6770-6778.	1.3	32
301	Nanoarchitectonics from Molecular Units to Livingâ€Creatureâ€Like Motifs. Chemical Record, 2018, 18, 676-695.	2.9	32
302	Defect-free exfoliation of graphene at ultra-high temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 127-132.	2.3	32
303	Toward Volatile and Nonvolatile Molecular Memories: Fluorescence Switching Based on Fluorideâ€Triggered Interconversion of Simple Porphyrin Derivatives. Chemistry - A European Journal, 2009, 15, 2486-2490.	1.7	31
304	Graphene composites with dental and biomedical applicability. Beilstein Journal of Nanotechnology, 2018, 9, 801-808.	1.5	31
305	Materials nanoarchitectonics at two-dimensional liquid interfaces. Beilstein Journal of Nanotechnology, 2019, 10, 1559-1587.	1.5	31
306	Post-assembly dimension-dependent face-selective etching of fullerene crystals. Materials Horizons, 2020, 7, 787-795.	6.4	31

#	Article	IF	CITATIONS
307	Interactions of Calcium Ions with Phospholipid Membranes. Studies on .piA Isotherms and Electrochemical and Quartz-Crystal Microbalance Measurements. Langmuir, 1994, 10, 2267-2271.	1.6	30
308	Nanostructured microspheres of MnO2formed by room temperature solution processing. Chemical Communications, 2008, , 383-385.	2.2	30
309	Soft material nanoarchitectonics at interfaces: molecular assembly, nanomaterial synthesis, and life control. Molecular Systems Design and Engineering, 2019, 4, 49-64.	1.7	30
310	Molecular recognition at the air–water interface: nanoarchitectonic design and physicochemical understanding. Physical Chemistry Chemical Physics, 2020, 22, 24856-24869.	1.3	30
311	Zero-to-one (or more) nanoarchitectonics: how to produce functional materials from zero-dimensional single-element unit, fullerene. Materials Advances, 2021, 2, 582-597.	2.6	30
312	Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Science and Technology of Advanced Materials, 2022, 23, 393-412.	2.8	30
313	Diverse Self-Assembly in Soluble Oligoazaacenes: A Microscopy Study. Langmuir, 2009, 25, 8408-8413.	1.6	29
314	Shape-controlled cobalt phosphide nanoparticles as volatile organic solvent sensor. Journal of Materials Chemistry C, 2016, 4, 4967-4977.	2.7	29
315	Control of molecular ordering in guanidinium-functionalized monolayer by carboxylate template molecules. Chemical Communications, 1997, , 1357-1358.	2.2	28
316	Effect of Water on Foaming Properties of Diglycerol Fatty Acid Esterâ^'Oil Systems. Langmuir, 2007, 23, 6918-6926.	1.6	28
317	Supramolecular approaches to biological therapy. Expert Opinion on Biological Therapy, 2009, 9, 307-320.	1.4	28
318	Lowâ€Bandâ€Gap BODIPY Conjugated Copolymers for Sensing Volatile Organic Compounds. Chemistry - A European Journal, 2015, 21, 17344-17354.	1.7	28
319	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie, 2016, 128, 8368-8374.	1.6	28
320	Wool Carpet Dye Adsorption on Nanoporous Carbon Materials Derived from Agro-Product. Journal of Carbon Research, 2017, 3, 12.	1.4	28
321	Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Science and Technology of Advanced Materials, 2022, 23, 413-423.	2.8	28
322	Electrochemically Organized Isolated Fullerene-Rich Thin Films with Optical Limiting Properties. ACS Applied Materials & Interfaces, 2016, 8, 24295-24299.	4.0	27
323	Spongelike Porous Silica Nanosheets: From "Soft―Molecular Trapping to DNA Delivery. ACS Applied Materials & Interfaces, 2017, 9, 4509-4518	4.0	27
324	Coordination Polymer Nanoglue: Robust Adhesion Based on Collective Lamellar Stacking of Nanoplates. ACS Nano, 2017, 11, 3662-3670.	7.3	27

#	Article	IF	CITATIONS
325	Enhanced Adsorption Selectivity of Aromatic Vapors in Carbon Capsule Film by Control of Surface Surfactants on Carbon Capsule. Bulletin of the Chemical Society of Japan, 2018, 91, 391-397.	2.0	27
326	Hierarchical heterostructure of Ag-nanoparticle decorated fullerene nanorods (Ag–FNRs) as an effective single particle freestanding SERS substrate. Physical Chemistry Chemical Physics, 2018, 20, 18873-18878.	1.3	27
327	Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. Nanoscale, 2022, 14, 10610-10629.	2.8	27
328	Intrinsic parameters for structural variation of reverse micelles in nonionic surfactant (glycerol) Tj ETQq0 0 0 rgBT	/Qyerlock 1.3	10 Tf 50 62 26
329	Colorimetric visualization of acid–base equilibria in non-polar solvent. Chemical Communications, 2013, 49, 6870.	2.2	26
330	Mesoporous architectures with highly crystallized frameworks. Journal of Materials Chemistry A, 2014, 2, 12096-12103.	5.2	26
331	Nanosheet transfection: effective transfer of naked DNA on silica glass. NPG Asia Materials, 2015, 7, e184-e184.	3.8	26
332	Nanoarchitectonics of Nanoporous Carbon Materials from Natural Resource for Supercapacitor Application. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 48-56.	1.9	26
333	Formation and Properties of Reverse Micellar Cubic Liquid Crystals and Derived Emulsions. Langmuir, 2007, 23, 11007-11014.	1.6	25
334	Lipophilic Tail Architecture and Molecular Structure of Neutralizing Agent for the Controlled Rheology of Viscoelastic Fluid in Amino Acid-Based Anionic Surfactant System. Langmuir, 2011, 27, 2229-2236.	1.6	25
335	Thermally Induced Intraâ€Carboxyl Proton Shuttle in a Molecular Rackâ€andâ€Pinion Cascade Achieving Macroscopic Crystal Deformation. Angewandte Chemie - International Edition, 2016, 55, 14628-14632.	7.2	25
336	Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 576-585.	1.9	25
337	Dynamic nanoarchitectonics: Supramolecular polymorphism and differentiation, shape-shifter and hand-operating nanotechnology. Current Opinion in Colloid and Interface Science, 2018, 35, 68-80.	3.4	25
338	Molecular Tuning Nanoarchitectonics for Molecular Recognition and Molecular Manipulation. ChemNanoMat, 2020, 6, 870-880.	1.5	25
339	Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. Bulletin of the Chemical Society of Japan, 2021, 94, 565-572.	2.0	25
340	Phase Behavior and Microstructures of Nonionic Fluorocarbon Surfactant in Aqueous Systems. Journal of Physical Chemistry B, 2008, 112, 10520-10527.	1.2	24
341	Chemically Programmed Ultrahigh Density Two-Dimensional Semiconductor Superlattice Array. Journal of the American Chemical Society, 2010, 132, 1212-1213.	6.6	24
342	Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface. Nanoscale Research Letters, 2011, 6, 304.	3.1	24

#	Article	IF	CITATIONS
343	Electrochemical Coupling Layer-by-layer (ECC-LbL) Assembly in Patterning Mode. Chemistry Letters, 2012, 41, 383-385.	0.7	24
344	A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines. Chemical Communications, 2012, 48, 9029.	2.2	24
345	Highly Ordered Nanoporous Carbon Films with Tunable Pore Diameters and their Excellent Sensing Properties. Chemistry - A European Journal, 2015, 21, 697-703.	1.7	24
346	Simple Fabrication of Titanium Dioxide/N-Doped Carbon Hybrid Material as Non-Precious Metal Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 18782-18789.	4.0	24
347	High surface area nanoporous carbon derived from high quality jute from Bangladesh. Materials Chemistry and Physics, 2018, 216, 491-495.	2.0	24
348	Emission Control by Molecular Manipulation of Doubleâ€Paddled Binuclear Pt ^{II} Complexes at the Airâ€Water Interface. Chemistry - an Asian Journal, 2020, 15, 406-414.	1.7	24
349	2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry - A European Journal, 2020, 26, 6461-6472.	1.7	24
350	Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor Coated with Copper(I) Complex. Bulletin of the Chemical Society of Japan, 2021, 94, 648-654.	2.0	24
351	Short haired wormlike micelles in mixed nonionic fluorocarbon surfactants. Journal of Colloid and Interface Science, 2007, 314, 223-229.	5.0	23
352	Self-assembled pyrazinacene nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 4868.	1.3	23
353	Mechano-Nanoarchitectonics for Bio-Functions at Interfaces. Analytical Sciences, 2016, 32, 1141-1149.	0.8	23
354	A Nanoporous Cytochrome <i>c</i> Film with Highly Ordered Porous Structure for Sensing of Toxic Vapors. Advanced Materials, 2017, 29, 1702295.	11.1	23
355	Methods with Nanoarchitectonics for Small Molecules and Nanostructures to Regulate Living Cells. Small Methods, 2020, 4, 2000500.	4.6	23
356	Mechanoâ€Nanoarchitectonics: Design and Function. Small Methods, 2022, 6, e2101577.	4.6	23
357	A QCM Study on Adsorption of Macrocyclic Sugar-Cluster to Variously-Functionalized Monolayers. Chemistry Letters, 1998, 27, 1007-1008.	0.7	22
358	Rheological behavior of viscoelastic wormlike micelles in mixed sodium dodecyl trioxyethylene sulfate–monolaurin aqueous system. Colloid and Polymer Science, 2008, 286, 1613-1619.	1.0	22
359	Reverse micelle microstructural transformations induced by oil and water. Soft Matter, 2011, 7, 10017.	1.2	22
360	A Single‣tep Synthesis of Electroactive Mesoporous ProDOT‣ilica Structures. Angewandte Chemie - International Edition, 2015, 54, 8407-8410.	7.2	22

#	Article	IF	CITATIONS
361	From Nanotechnology to Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 177-178.	1.9	22
362	Junctionâ€Controlled Topological Polymerization. Angewandte Chemie - International Edition, 2018, 57, 4936-4939.	7.2	22
363	Fullerene Nanoarchitectonics with Shape-Shifting. Materials, 2020, 13, 2280.	1.3	22
364	Nanoarchitectonics on living cells. RSC Advances, 2021, 11, 18898-18914.	1.7	22
365	Development of MOF Reinforcement for Structural Stability and Toughness Enhancement of Biodegradable Bioinks. Biomacromolecules, 2021, 22, 1053-1064.	2.6	22
366	Electrochemical Synthesis of Transparent, Amorphous, C ₆₀ â€Rich, Photoactive, and Lowâ€Doped Film with an Interconnected Structure. Small, 2013, 9, 2064-2068.	5.2	21
367	In situ 2D-extraction of DNA wheels by 3D through-solution transport. Physical Chemistry Chemical Physics, 2015, 17, 32122-32125.	1.3	21
368	Highly active and reusable hydrotalcite-supported Pd(0) catalyst for Suzuki coupling reactions of aryl bromides and chlorides. Tetrahedron, 2018, 74, 948-954.	1.0	21
369	Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. Nanomaterials, 2021, 11, 2146.	1.9	21
370	High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from <i>Artocarpus heterophyllus</i> Seed. ACS Applied Energy Materials, 2021, 4, 12257-12266.	2.5	21
371	Aqueous Phase Behavior of Diglycerol Fatty Acid Esters. Journal of Dispersion Science and Technology, 2007, 28, 883-891.	1.3	20
372	Dynamic Surface Tension and Surface Dilatational Elasticity Properties of Mixed Surfactant/Protein Systems. Journal of Oleo Science, 2008, 57, 485-494.	0.6	20
373	Nonionic reverse micelle formulation and their microstructure transformations in an aromatic solvent ethylbenzene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 140-150.	2.3	20
374	Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α. International Journal of Nanomedicine, 2012, 7, 3625.	3.3	20
375	Alkyl Imidazolium Ionic-Liquid-Mediated Formation of Gold Particle Superstructures. Langmuir, 2013, 29, 7186-7194.	1.6	20
376	Gene transfer on inorganic/organic hybrid silica nanosheets. Physical Chemistry Chemical Physics, 2015, 17, 25455-25462.	1.3	20
377	Multimodal switching of a redox-active macrocycle. Nature Communications, 2019, 10, 1007.	5.8	20
378	Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules, 2021, 26, 1621.	1.7	20

#	Article	IF	CITATIONS
379	Nanoarchitectonics for fullerene biology. Applied Materials Today, 2021, 23, 100989.	2.3	20
380	Phase Behavior of Diglycerol Monomyristate in Different Nonpolar Organic Solvent Systems. Journal of Dispersion Science and Technology, 2007, 28, 1236-1241.	1.3	19
381	Decomposition of Dinuclear Manganese Complexes for the Preparation of Nanostructured Oxide Materials. Inorganic Chemistry, 2008, 47, 8306-8314.	1.9	19
382	Manipulation of thin film assemblies: Recent progress and novel concepts. Current Opinion in Colloid and Interface Science, 2011, 16, 459-469.	3.4	19
383	Self-Assembled Fullerene Nanostructures. Journal of Oleo Science, 2013, 62, 541-553.	0.6	19
384	Synthesis and characterizations of nanoporous carbon derived from Lapsi (Choerospondias axillaris) seed: Effect of carbonization conditions. Advanced Powder Technology, 2015, 26, 894-900.	2.0	19
385	Fullerphene Nanosheets: A Bottomâ€Up 2D Material for Singleâ€Carbonâ€Atomâ€Level Molecular Discrimination. Advanced Materials Interfaces, 2022, 9, .	1.9	19
386	Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production. Journal of the American Chemical Society, 2022, 144, 10830-10843.	6.6	19
387	Development of Nanoporous Structure in Carbons by Chemical Activation with Zinc Chloride. Journal of Nanoscience and Nanotechnology, 2013, 13, 2613-2623.	0.9	18
388	Mechanical Tuning of Throughâ€Molecule Conductance in a Conjugated Calix[4]pyrrole. ChemistrySelect, 2018, 3, 6473-6478.	0.7	18
389	Supramolecular nanoarchitectonics for functional materials. APL Materials, 2019, 7, .	2.2	18
390	Unidirectional Branching Growth of Dipeptide Single Crystals for Remote Light Multiplication and Collection. ACS Applied Materials & amp; Interfaces, 2019, 11, 31-36.	4.0	18
391	Atomic and Organic Nanoarchitectonics. Trends in Chemistry, 2020, 2, 779-782.	4.4	18
392	Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance. Materials, 2020, 13, 2371.	1.3	18
393	Surface Oxidized Carbon Nanotubes Uniformly Coated with Nickel Ferrite Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1301-1308.	1.9	17
394	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Dimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie, 2018, 130, 9827-9831.	1.6	17
395	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	2.9	17
396	Nanoarchitectonics for Nanocarbon Assembly and Composite. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 42-55.	1.9	17

LOK KUMAR SHRESTHA

#	Article	IF	CITATIONS
397	Monitoring the Release of Silver from a Supramolecular Fullerene C60-AgNO3 Nanomaterial. Bulletin of the Chemical Society of Japan, 2021, 94, 1347-1354.	2.0	17
398	Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene. Molecules, 2021, 26, 4636.	1.7	17
399	Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations. Ceramics International, 2015, 41, 9426-9432.	2.3	16
400	Symmetric Raman Tensor Contributes to Chiral Vibrational Sum-Frequency Generation from Binaphthyl Amphiphile Monolayers on Water: Study of Electronic Resonance Amplitude and Phase Profiles. Journal of Physical Chemistry C, 2017, 121, 11241-11250.	1.5	16
401	Optogenetic Modulation and Reprogramming of Bacteriorhodopsinâ€Transfected Human Fibroblasts on Selfâ€Assembled Fullerene C60 Nanosheets. Advanced Biology, 2019, 3, e1800254.	3.0	16
402	Nanoarchitectonics of Lotus Seed Derived Nanoporous Carbon Materials for Supercapacitor Applications. Materials, 2020, 13, 5434.	1.3	16
403	Nanoarchitektonik als ein Ansatz zur Erzeugung bioänlicher hierarchischer Organisate. Angewandte Chemie, 2020, 132, 15550-15574.	1.6	16
404	Solvothermally synthesized anatase TiO2 nanoparticles for photoanodes in dye-sensitized solar cells. Science and Technology of Advanced Materials, 2021, 22, 100-112.	2.8	16
405	Conformational interchange of a carbohydrate by mechanical compression at the air–water interface. Physical Chemistry Chemical Physics, 2014, 16, 10286.	1.3	15
406	Manipulation of Shell Morphology of Silicate Spheres from Structural Evolution in a Purely Inorganic System. Chemistry - an Asian Journal, 2015, 10, 1379-1386.	1.7	15
407	Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation. Current Opinion in Colloid and Interface Science, 2019, 44, 1-13.	3.4	15
408	Microwires of Au–Ag Nanocages Patterned via Magnetic Nanoadhesives for Investigating Proteins using Surface Enhanced Infrared Absorption Spectroscopy. ACS Applied Materials & Interfaces, 2019, 11, 18053-18061.	4.0	15
409	Atomic Nanoarchitectonics for Catalysis. Advanced Materials Interfaces, 2021, 8, 2001395.	1.9	15
410	Lipid coating technology: A potential solution to address the problem of sticky containers and vanishing drugs. View, 2022, 3, 20200078.	2.7	15
411	Structural Investigation of Diglycerol Polyisostearate Reverse Micelles in Organic Solvents. Journal of Physical Chemistry B, 2009, 113, 12669-12679.	1.2	14
412	Controlling Porphyrin Nanoarchitectures at Solid Interfaces. Langmuir, 2013, 29, 7291-7299.	1.6	14
413	Light-Harvesting Nanorods Based on Pheophorbide-Appending Cellulose. Biomacromolecules, 2013, 14, 3223-3230.	2.6	14
414	Demonstration of Solvent-Induced One-Dimensional Nonionic Reverse Micelle Growth. Journal of Physical Chemistry Letters, 2013, 4, 2585-2590.	2.1	14

#	Article	IF	CITATIONS
415	Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. Thin Solid Films, 2014, 554, 32-40.	0.8	14
416	Sodium Hydroxide Activated Nanoporous Carbons Based on Lapsi Seed Stone. Journal of Nanoscience and Nanotechnology, 2015, 15, 1465-1472.	0.9	14
417	Enhanced Activity of Alcohol Dehydrogenase in Porous Silica Nanosheets with Wide Size Distributed Mesopores. Bulletin of the Chemical Society of Japan, 2019, 92, 275-282.	2.0	14
418	Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. Journal of Carbon Research, 2020, 6, 73.	1.4	14
419	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	3.3	14
420	Nanoarchitectonics: bottom-up creation of functional materials and systems. Beilstein Journal of Nanotechnology, 2020, 11, 450-452.	1.5	14
421	Langmuir–Blodgett Nanoarchitectonics, Out of the Box. Accounts of Materials Research, 2022, 3, 404-410.	5.9	14
422	Nanoarchitectonics horizons: materials for life sciences. Nanoscale, 2022, 14, 10630-10647.	2.8	14
423	Structure and rheology of reverse micelles in dipentaerythrityl tri-(12-hydroxystearate)/oil systems. Physical Chemistry Chemical Physics, 2011, 13, 4911.	1.3	13
424	One-touch Nanofabrication of Regular-sized Disks through Interfacial Dewetting and Weak Molecular Interaction. Chemistry Letters, 2012, 41, 170-172.	0.7	13
425	Interfacial nanoarchitectonics for responsive cellular biosystems. Materials Today Bio, 2020, 8, 100075.	2.6	13
426	Nanoarchitectonics at Interfaces for Regulations of Biorelated Phenomena: Small Structures with Big Effects. Small Structures, 2021, 2, 2100006.	6.9	13
427	Hydrogenâ€Bondâ€Assisted "Gold Cold Fusion―for Fabrication of 2D Web Structures. Chemistry - an Asian Journal, 2009, 4, 1055-1058.	1.7	12
428	Structure of Diglycerol Polyisostearate Nonionic Surfactant Micelles in Nonpolar Oil Hexadecane: A SAXS Study. Journal of Oleo Science, 2010, 59, 339-350.	0.6	12
429	Viscoelastic solution of long polyoxyethylene chain phytosterol/monoglyceride/water systems. Colloid and Polymer Science, 2010, 288, 405-414.	1.0	12
430	Base-Selective Adsorption of Nucleosides to Pore-Engineered Nanocarbon, Carbon Nanocage. Journal of Nanoscience and Nanotechnology, 2011, 11, 3959-3964.	0.9	12
431	Worm-Like Soft Nanostructures in Nonionic Systems: Principles, Properties and Application as Templates. Journal of Nanoscience and Nanotechnology, 2013, 13, 4497-4520.	0.9	12
432	Manipulation of fullerene superstructures by complexing with polycyclic aromatic compounds. Physical Chemistry Chemical Physics, 2017, 19, 29099-29105.	1.3	12

#	Article	IF	CITATIONS
433	Fabrication of Silica-Protein Hierarchical Nanoarchitecture with Gas-Phase Sensing Activity. Journal of Nanoscience and Nanotechnology, 2017, 17, 5908-5917.	0.9	12
434	Structural-Size Control of Domain from Nano to Micro: Logical Balancing between Attractive and Repulsive Interactions in Two Dimensions. Langmuir, 2019, 35, 10383-10389.	1.6	12
435	Molecular Engineering of βâ€Substituted Oxoporphyrinogens for Hydrogenâ€Bond Donor Catalysis. European Journal of Organic Chemistry, 2020, 2020, 82-90.	1.2	12
436	Two-dimensional molecular array of porphyrin derivatives with bright and dark spots as a model of two-digit molecular-dot memory. Synthetic Metals, 2009, 159, 765-768.	2.1	11
437	Anchoring of self-assembled monolayers of unsymmetrically-substituted chromophores with an oxoporphyrinogen surface clamp. Chemical Communications, 2011, 47, 8533.	2.2	11
438	Reverse Micelle Microstructural Transformations Induced by Surfactant Molecular Structure, Concentration, and Temperature. Journal of Nanoscience and Nanotechnology, 2011, 11, 7665-7675.	0.9	11
439	Dynamic supramolecular systems at interfaces. Supramolecular Chemistry, 2011, 23, 183-194.	1.5	11
440	Facile Synthesis of Tellurium Nanowires and Study of Their Third-Order Nonlinear Optical Properties. Journal of the Brazilian Chemical Society, 2016, , .	0.6	11
441	Life science nanoarchitectonics at interfaces. Materials Chemistry Frontiers, 2021, 5, 1018-1032.	3.2	11
442	Fullerene Rosette: Two-Dimensional Interactive Nanoarchitectonics and Selective Vapor Sensing. International Journal of Molecular Sciences, 2022, 23, 5454.	1.8	11
443	Oil-Induced Anomalous Thermoresponsive Viscoelasticity in Fluorinated Surfactant Systems. Journal of Physical Chemistry B, 2007, 111, 12146-12153.	1.2	10
444	Macroporous poly(aromatic amine): Synthesis and film fabrication. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 156-161.	2.3	10
445	Carbon Nanocage: Super-Adsorber of Intercalators for DNA Protection. Journal of Nanoscience and Nanotechnology, 2011, 11, 3084-3090.	0.9	10
446	<i>In-Situ</i> Formation of Silver Nanoparticles Using Nonionic Surfactant Reverse Micelles as Nanoreactors. Journal of Nanoscience and Nanotechnology, 2014, 14, 2238-2244.	0.9	10
447	Totally Phospholipidic Mesoporous Particles. Journal of Physical Chemistry C, 2015, 119, 7255-7263.	1.5	10
448	pH-Responsive Cotton Effects in the d–d Transition Band of Self-Assembling Copper(II) Complexes with a Cholesteryl-Armed Ligand. Bulletin of the Chemical Society of Japan, 2017, 90, 739-745.	2.0	10
449	Nanomechanical Recognition and Discrimination of Volatile Molecules by Au Nanocages Deposited on Membrane-Type Surface Stress Sensors. ACS Applied Nano Materials, 2020, 3, 4061-4068.	2.4	10
450	Carbon Nanoarchitectonics for Energy and Related Applications. Journal of Carbon Research, 2021, 7, 73.	1.4	10

#	Article	IF	CITATIONS
451	Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. Bulletin of the Chemical Society of Japan, 2022, 95, 889-897.	2.0	10
452	Molecular Arrays and Patterns for Supramolecular Materials. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 553-558.	0.1	9
453	Self-Assembled Structures of Diglycerol Monolaurate- and Monomyristate in Olive Oil. Journal of Dispersion Science and Technology, 2009, 30, 1525-1532.	1.3	9
454	Morphology Adjustable Silica Nanosheets for Immobilization of Gold Nanoparticles. ChemistrySelect, 2017, 2, 5793-5799.	0.7	9
455	Fluoride-ion-binding promoted photoinduced charge separation in a self-assembled C ₆₀ alkyl cation bound bis-crown ether-oxoporphyrinogen supramolecule. Chemical Communications, 2018, 54, 1351-1354.	2.2	9
456	Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures. Analytical Sciences, 2021, 37, 1331-1348.	0.8	9
457	Self-Assembled Corn-Husk-Shaped Fullerene Crystals as Excellent Acid Vapor Sensors. Chemosensors, 2022, 10, 16.	1.8	9
458	Biomimetic and Biological Nanoarchitectonics. International Journal of Molecular Sciences, 2022, 23, 3577.	1.8	9
459	Formation and Cleansing Performance of Bicontinuous Microemulsions in Water/Poly (oxyethylene) Alkyl Ether/Ester-Type Oil Systems. Journal of Oleo Science, 2013, 62, 803-808.	0.6	8
460	Facile Fabrication of Silver Nanoclusters as Promising Surface-Enhanced Raman Scattering Substrates. Journal of Nanoscience and Nanotechnology, 2014, 14, 2245-2251.	0.9	8
461	Vortex-Aligned Ordered Film of Crystalline Fullerene C ₇₀ Microtubes with Enhanced Photoluminescence and Photovoltaics Properties. Journal of Nanoscience and Nanotechnology, 2020, 20, 2971-2978.	0.9	8
462	Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. Materials Today Chemistry, 2021, 21, 100534.	1.7	8
463	High Surface Area Nanoporous Activated Carbons Materials from Areca catechu Nut with Excellent Iodine and Methylene Blue Adsorption. Journal of Carbon Research, 2022, 8, 2.	1.4	8
464	Unusual formation of small aggregates by mixing giant multilamellar vesicles. Journal of Colloid and Interface Science, 2007, 312, 108-113.	5.0	7
465	Growth Control of Nonionic Reverse Micelles by Surfactant and Solvent Molecular Architecture and Water Addition. Journal of Nanoscience and Nanotechnology, 2011, 11, 4863-4873.	0.9	7
466	Mixing Antisolvents Induced Modulation in the Morphology of Crystalline C60. Journal of Nanoscience and Nanotechnology, 2012, 12, 6380-6384.	0.9	7
467	Production of Self-Assembled Fullerene (C ₆₀) Nanocrystals at Liquid–Liquid Interface. Journal of Nanoscience and Nanotechnology, 2015, 15, 2394-2399	0.9	7
468	Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic. Carbon, 2018, 134, 334-344.	5.4	7

LOK KUMAR SHRESTHA

#	Article	IF	CITATIONS
469	Electrochemical Behavior of Cytochrome C Immobilized in a Magnetically Induced Mesoporous Framework. ChemElectroChem, 2019, 6, 5802-5809.	1.7	7
470	Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes. Chemical Science, 2020, 11, 2614-2620.	3.7	7
471	Nelumbo nucifera Seed–Derived Nitrogen-Doped Hierarchically Porous Carbons as Electrode Materials for High-Performance Supercapacitors. Nanomaterials, 2021, 11, 3175.	1.9	7
472	Recycling Waste Paper for Further Implementation: XRD, FTIR, SEM, and EDS Studies. Journal of Oleo Science, 2022, 71, 619-626.	0.6	7
473	Interfacial Properties of Aqueous Nonionic Fluorocarbon Surfactant Solutions. Journal of Dispersion Science and Technology, 2007, 28, 577-581.	1.3	6
474	Selfâ€Assembly of a Mononuclear [Fe ^{III} (L)(EtOH) ₂] Complex Bearing an <i>n</i> â€Dodecyl Chain on Solid Highly Oriented Pyrolytic Graphite Surfaces. Chemistry - A European Journal, 2012, 18, 16419-16425.	1.7	6
475	Water Induced Microstructure Transformation of Diglycerol Monolaurate Reverse Micelles in Ethylbenzene. Journal of Oleo Science, 2012, 61, 575-584.	0.6	6
476	Structure of Diglycerol Monomyristate Reverse Micelles in Styrene: A Small-Angle X-ray Scattering (SAXS) Study. Journal of Nanoscience and Nanotechnology, 2011, 11, 6986-6994.	0.9	5
477	Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres. Applied Physics Letters, 2016, 109, .	1.5	5
478	Junction ontrolled Topological Polymerization. Angewandte Chemie, 2018, 130, 5030-5033.	1.6	5
479	Hydrotalcite-Supported Ag/Pd Bimetallic Nanoclusters Catalyzed Oxidation and One-Pot Aldol Reaction in Water. Catalysts, 2020, 10, 1120.	1.6	5
480	A heterogeneous bifunctional silica-supported Ag ₂ 0/Im ⁺ Cl ^{â^'} catalyst for efficient CO ₂ conversion. Catalysis Science and Technology, 2022, 12, 3778-3785.	2.1	5
481	Structural Investigation of Diglycerol Monolaurate Reverse Micelles in Nonpolar Oils Cyclohexane and Octane. Journal of Oleo Science, 2009, 58, 235-242.	0.6	4
482	Ligand displacement for fixing manganese: relevance to cellular metal ion transport and synthesis of polymeric coordination complexes. Dalton Transactions, 2013, 42, 2779-2785.	1.6	4
483	1D materials from ionic self-assembly in mixtures containing chromonic liquid crystal mesogens. Physical Chemistry Chemical Physics, 2020, 22, 23276-23285.	1.3	4
484	Electron and energy transfer in a porphyrin–oxoporphyrinogen–fullerene triad, ZnP–OxP–C ₆₀ . Physical Chemistry Chemical Physics, 2020, 22, 14356-14363.	1.3	4
485	Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1946-1953.	1.9	4
486	Nanoarchitectonics Can Save Our Planet: Nanoarchitectonics for Energy and Environment. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2243-2244.	1.9	4

#	Article	IF	CITATIONS
487	Nano-architectonics for coordination assemblies at interfacial media. Advances in Inorganic Chemistry, 2020, 76, 199-228.	0.4	4
488	Exploration of Molecular Function (Molecular Recognition and Molecular Machinery) beyond Molecular Design and Synthesis: Surface Science May Bring One-Million-Times Better Results!?. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 219-227.	0.0	4
489	Mechanical Manipulation of Archimedean Spirals of an Achiral Pyrazinacene for Chiral Assemblies. Advanced Materials Interfaces, 0, , 2200209.	1.9	4
490	Effect of Polyol on the Structure of Nonionic Surfactant Reverse Micelles in Glycerol Monoisostearate/Decane Systems. Langmuir, 2010, 26, 3115-3120.	1.6	3
491	Mesostructured fullerene crystals through inverse polymeric micelle assembly. Materials Letters, 2017, 209, 272-275.	1.3	3
492	A Simple Approach to Generate Hollow Carbon Nanospheres Loaded with Uniformly Dispersed Metal Nanoparticles. European Journal of Inorganic Chemistry, 2017, 2017, 5413-5416.	1.0	3
493	Demonstration of a Novel Charge-Free Reverse Wormlike Micelle System. Langmuir, 2018, 34, 8670-8677.	1.6	3
494	External Magnetic Field-Enhanced Supercapacitor Performance of Cobalt Oxide/Magnetic Graphene Composites. Bulletin of the Chemical Society of Japan, 2021, 94, 2245-2251.	2.0	3
495	Estimation of Enantiomeric Excess Based on Rapid Host–Guest Exchange. Chemosensors, 2021, 9, 259.	1.8	3
496	Solution behavior of aqueous mixtures of low and high molecular weight hydrophobic amphiphiles. Colloid and Polymer Science, 2010, 288, 739-751.	1.0	2
497	SAXS and Rheometry Studies of Diglycerol Monolurate Reverse Micelles in Styrene. Journal of Oleo Science, 2011, 60, 393-401.	0.6	2
498	Nanostructured Manganese Oxide Particles from Coordination Complex Decomposition and Their Catalytic Properties for Ethanol Oxidation. Journal of Nanoscience and Nanotechnology, 2012, 12, 8087-8093.	0.9	2
499	Thermally Induced Intraâ€Carboxyl Proton Shuttle in a Molecular Rackâ€andâ€Pinion Cascade Achieving Macroscopic Crystal Deformation. Angewandte Chemie, 2016, 128, 14848-14852.	1.6	2
500	Percolation Behavior of Nonionic Reverse Micellar Solution. Chemistry Letters, 2017, 46, 408-410.	0.7	2
501	Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air〓Water Interface. Langmuir, 2022, 38, 6481-6490.	1.6	2
502	Nanoarchitectonics, Method for Everything in Materials Science. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3245-3247.	1.9	2
503	Fabrication and Applications of Silver Sulphide Based Ion Sensors. Advanced Materials Research, 2010, 117, 7-14.	0.3	1
504	Structural Characterizations of Diglycerol Monomyristate Reverse Micelles in Aromatic Solvent Ethylbenzene. Journal of Nanoscience and Nanotechnology, 2012, 12, 3716-3724.	0.9	1

#	Article	IF	CITATIONS
505	Structure and Rheology of Charge-Free Reverse Micelles in Aromatic Liquid Phenyloctane. Journal of Nanoscience and Nanotechnology, 2012, 12, 3701-3715.	0.9	1
506	Structure of Nonionic Reverse Micelles in Octylbenzene. Journal of Dispersion Science and Technology, 2013, 34, 684-691.	1.3	1
507	Functional Nanomaterials Prepared by Nanoarchitectonics-Based Supramolecular Assembly. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 45-61.	0.1	1
508	Silica Nanomaterials. Methods in Pharmacology and Toxicology, 2016, , 137-151.	0.1	1
509	Layer-by-Layer Nanolayers for Green Science. , 2017, , 335-352.		1
510	Demonstration of Reentrant Relaxor Ferroelectric Phase Transitions in Antiferroelectric-Based (Pb0.50Ba0.50)ZrO3 Ceramics. Energies, 2018, 11, 850.	1.6	1
511	Nonionic Reverse Micelles near the Critical Point. Journal of Oleo Science, 2013, 62, 1073-1081.	0.6	1
512	Home Made Ion-selective Electrodes for Education. Transactions of the Materials Research Society of Japan, 2008, 33, 345-349.	0.2	1
513	Structural Characterization of Nonionic Surfactant Reverse Micelles in Diglycerol Monolaurate/Squalene System. Advanced Materials Research, 2010, 117, 87-92.	0.3	0
514	Topographically controlled growth of silver nanoparticle clusters. Physica Status Solidi - Rapid Research Letters, 2012, 6, 202-204.	1.2	0
515	Low-Temperature Catalytic Performance of Nanostructured CuO. Nanoscience and Nanotechnology Letters, 2016, 8, 220-225.	0.4	0
516	Stimuli-Responsive Charge-Free Reverse Micelles in Non-Aqueous Media. , 2017, , 37-61.		0
517	Nanoarchitectonics of Biomimetic Membranes. , 2017, , 39-59.		0
518	Fullerene Nanoarchitectonics: Rich Possibilities in Organized Structures from Zero-Dimensional Unit. Oleoscience, 2021, 21, 221-225.	0.0	0
519	Hierarchically Structured Functional Materials: Mesoporous Materials, Layer-by-Layer Films, and Self-Assembled Structures. Journal of the Japan Society of Colour Material, 2018, 91, 310-315.	0.0	0
520	Nanoarchitectonics. Nanostructure Science and Technology, 2022, , 35-44.	0.1	0