
Daniel J Liebl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8464194/publications.pdf Version: 2024-02-01

DANIEL LLIERI

#	Article	IF	CITATIONS
1	Inhibition of glial Dâ€serine release rescues synaptic damage after brain injury. Glia, 2022, 70, 1133-1152.	4.9	13
2	Reducing acetylated tau is neuroprotective in brain injury. Cell, 2021, 184, 2715-2732.e23.	28.9	91
3	EphB3 interacts with initiator caspases and FHL-2 to activate dependence receptor cell death in oligodendrocytes after brain injury. Brain Communications, 2020, 2, fcaa175.	3.3	3
4	Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis. Nature Communications, 2019, 10, 3028.	12.8	33
5	Neuroprotective Efficacy of a Sigma 2 Receptor/TMEM97 Modulator (DKR-1677) after Traumatic Brain Injury. ACS Chemical Neuroscience, 2019, 10, 1595-1602.	3.5	48
6	Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Experimental Neurology, 2019, 312, 51-62.	4.1	33
7	EphB3 signaling induces cortical endothelial cell death and disrupts the blood–brain barrier after traumatic brain injury. Cell Death and Disease, 2018, 9, 7.	6.3	32
8	Eph/Ephrin Signaling Controls Progenitor Identities In The Ventral Spinal Cord. Neural Development, 2017, 12, 10.	2.4	11
9	Enhanced astrocytic d-serine underlies synaptic damage after traumatic brain injury. Journal of Clinical Investigation, 2017, 127, 3114-3125.	8.2	95
10	Explant Methodology for Analyzing Neuroblast Migration. Bio-protocol, 2017, 7, .	0.4	3
11	EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain. Neurobiology of Disease, 2016, 94, 73-84.	4.4	27
12	EphrinB3 restricts endogenous neural stem cell migration after traumatic brain injury. Stem Cell Research, 2016, 17, 504-513.	0.7	10
13	A flow cytometric approach to analyzing mature and progenitor endothelial cells following traumatic brain injury. Journal of Neuroscience Methods, 2016, 263, 57-67.	2.5	11
14	Endogenous Neural Stem/Progenitor Cells Stabilize the Cortical Microenvironment after Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 753-764.	3.4	35
15	Pronounced hypoxia in the subventricular zone following traumatic brain injury and the neural stem/progenitor cell response. Experimental Biology and Medicine, 2013, 238, 830-841.	2.4	14
16	Reproducible Expansion and Characterization of Mouse Neural Stem/Progenitor Cells in Adherent Cultures Derived from the Adult Subventricular Zone. Current Protocols in Stem Cell Biology, 2012, 20, Unit 2D.8.	3.0	15
17	High-Content Analysis of Proapoptotic EphA4 Dependence Receptor Functions Using Small-Molecule Libraries. Journal of Biomolecular Screening, 2012, 17, 785-795.	2.6	13
18	Neural progenitors proliferation is inhibited by EphB3 in the developing subventricular zone. International Journal of Developmental Neuroscience, 2011, 29, 9-14.	1.6	23

DANIEL J LIEBL

#	Article	IF	CITATIONS
19	Eph signaling regulates gliotransmitter release. Communicative and Integrative Biology, 2011, 4, 223-226.	1.4	17
20	EphB3 Limits the Expansion of Neural Progenitor Cells in the Subventricular Zone by Regulating p53 During Homeostasis and Following Traumatic Brain Injury. Stem Cells, 2010, 28, 1231-1242.	3.2	78
21	EphrinBs Regulate d-Serine Synthesis and Release in Astrocytes. Journal of Neuroscience, 2010, 30, 16015-16024.	3.6	67
22	EphrinB3 is an anti-apoptotic ligand that inhibits the dependence receptor functions of EphA4 receptors during adult neurogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 231-238.	4.1	85
23	Ephrins and Eph Receptor Tyrosine Kinases in Synapse Formation. , 2009, , 333-345.		0
24	Adult spinal cord progenitor cells are repelled by netrin-1 in the embryonic and injured adult spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17837-17842.	7.1	34
25	EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Molecular and Cellular Neurosciences, 2006, 31, 713-722.	2.2	90
26	Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Developmental Biology, 2006, 292, 34-45.	2.0	57
27	Ephrins and their Receptors: Binding versus Biology. IUBMB Life, 2004, 56, 257-265.	3.4	60
28	mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. Journal of Neuroscience Research, 2003, 71, 7-22.	2.9	147
29	Eph receptor deficiencies lead to altered cochlear function. Hearing Research, 2003, 178, 118-130.	2.0	19
30	Regulation of Trk Receptors Following Contusion of the Rat Spinal Cord. Experimental Neurology, 2001, 167, 15-26.	4.1	106
31	Absence of Sensory Neurons before Target Innervation in Brain-Derived Neurotrophic Factor-, Neurotrophin 3-, and TrkC-Deficient Embryonic Mice. Journal of Neuroscience, 1997, 17, 9113-9121.	3.6	207