Shuixing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8464034/publications.pdf Version: 2024-02-01

SHUIVINGLI

#	Article	IF	CITATIONS
1	Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy and Environmental Science, 2020, 13, 635-645.	30.8	636
2	New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives. ACS Energy Letters, 2020, 5, 1554-1567.	17.4	491
3	Layerâ€by‣ayer Processed Ternary Organic Photovoltaics with Efficiency over 18%. Advanced Materials, 2021, 33, e2007231.	21.0	438
4	An Unfused oreâ€Based Nonfullerene Acceptor Enables Highâ€Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. Advanced Materials, 2018, 30, 1705208.	21.0	380
5	Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets. Journal of the American Chemical Society, 2019, 141, 3073-3082.	13.7	362
6	A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy and Environmental Science, 2016, 9, 604-610.	30.8	347
7	Asymmetric Electron Acceptors for Highâ€Efficiency and Lowâ€Energyâ€Loss Organic Photovoltaics. Advanced Materials, 2020, 32, e2001160.	21.0	246
8	Efficient Organic Solar Cells with Nonâ€Fullerene Acceptors. Small, 2017, 13, 1701120.	10.0	216
9	Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule, 2022, 6, 662-675.	24.0	212
10	Molecular Engineered Holeâ€Extraction Materials to Enable Dopantâ€Free, Efficient pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700012.	19.5	195
11	Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 12132-12141.	10.3	119
12	Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications, 2022, 13, 2598.	12.8	113
13	Molecular electron acceptors for efficient fullerene-free organic solar cells. Physical Chemistry Chemical Physics, 2017, 19, 3440-3458.	2.8	112
14	A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 10659-10665.	10.3	110
15	Nonfullerene Tandem Organic Solar Cells with High Open ircuit Voltage of 1.97 V. Advanced Materials, 2016, 28, 9729-9734.	21.0	104
16	Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics. Nature Communications, 2021, 12, 4627.	12.8	98
17	A non-fullerene acceptor with a fully fused backbone for efficient polymer solar cells with a high open-circuit voltage. Journal of Materials Chemistry A, 2016, 4, 14983-14987.	10.3	97
18	A Nearâ€Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells. Advanced Science, 2018, 5, 1800755.	11.2	93

Shuixing Li

#	Article	IF	CITATIONS
19	Near-Infrared Electron Acceptors with Unfused Architecture for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 16700-16706.	8.0	93
20	Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. Journal of Materials Chemistry A, 2019, 7, 27632-27639.	10.3	86
21	A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells. Journal of Materials Chemistry A, 2016, 4, 3777-3783.	10.3	77
22	Nearâ€Infrared Nonfullerene Acceptors Based on Benzobis(thiazole) Unit for Efficient Organic Solar Cells with Low Energy Loss. Small Methods, 2019, 3, 1900531.	8.6	76
23	Design of Non-fused Ring Acceptors toward High-Performance, Stable, and Low-Cost Organic Photovoltaics. Accounts of Materials Research, 2022, 3, 644-657.	11.7	66
24	Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device. Energy and Environmental Science, 2022, 15, 855-865.	30.8	62
25	Non-fullerene Acceptors with a Thieno[3,4-c]pyrrole-4,6-dione (TPD) Core for Efficient Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1005-1014.	3.8	61
26	Achieving efficient organic solar cells and broadband photodetectors via simple compositional tuning of ternary blends. Nano Energy, 2019, 63, 103807.	16.0	59
27	Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42444-42452.	8.0	58
28	A New End Group on Nonfullerene Acceptors Endows Efficient Organic Solar Cells with Low Energy Losses. Advanced Functional Materials, 2022, 32, 2108614.	14.9	56
29	Enhanced intramolecular charge transfer of unfused electron acceptors for efficient organic solar cells. Materials Chemistry Frontiers, 2019, 3, 513-519.	5.9	53
30	Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells. Journal of Materials Chemistry A, 2020, 8, 18154-18161.	10.3	49
31	Enhancement of intra- and inter-molecular π-conjugated effects for a non-fullerene acceptor to achieve high-efficiency organic solar cells with an extended photoresponse range and optimized morphology. Materials Chemistry Frontiers, 2018, 2, 2006-2012.	5.9	46
32	Marcus Hole Transfer Governs Charge Generation and Device Operation in Nonfullerene Organic Solar Cells. ACS Energy Letters, 2021, 6, 2971-2981.	17.4	41
33	Conformation Locking of Simple Nonfused Electron Acceptors Via Multiple Intramolecular Noncovalent Bonds to Improve the Performances of Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 819-827.	5.1	40
34	Synergistic Effects of Chlorination and Branched Alkyl Side Chain on the Photovoltaic Properties of Simple Nonâ€Fullerene Acceptors with Quinoxaline as the Core. ChemSusChem, 2021, 14, 3599-3606.	6.8	33
35	Combining Fusedâ€Ring and Unfusedâ€Core Electron Acceptors Enables Efficient Ternary Organic Solar Cells with Enhanced Fill Factor and Broad Compositional Tolerance. Solar Rrl, 2019, 3, 1900317.	5.8	28
36	Influences of Quinoid Structures on Stability and Photovoltaic Performance of Nonfullerene Acceptors. Solar Rrl, 2020, 4, 2000286.	5.8	27

Shuixing Li

#	Article	IF	CITATIONS
37	A non-fullerene acceptor enables efficient P3HT-based organic solar cells with small voltage loss and thickness insensitivity. Chinese Chemical Letters, 2019, 30, 1277-1281.	9.0	26
38	Non-fullerene acceptors with nitrogen-containing six-membered heterocycle cores for the applications in organic solar cells. Solar Energy Materials and Solar Cells, 2021, 225, 111046.	6.2	23
39	Intrinsically Chemo- and Thermostable Electron Acceptors for Efficient Organic Solar Cells. Bulletin of the Chemical Society of Japan, 2021, 94, 183-190.	3.2	22
40	Enhanced performance of inverted non-fullerene organic solar cells through modifying zinc oxide surface with self-assembled monolayers. Organic Electronics, 2018, 63, 143-148.	2.6	20
41	A Benzobis(thiazole)-Based Wide Bandgap Polymer Donor Enables over 15% Efficiency Organic Photovoltaics with a Flat Energetic Offset. Macromolecules, 2021, 54, 7862-7869.	4.8	17
42	A nuanced approach for assessing OPV materials for large scale applications. Sustainable Energy and Fuels, 2020, 4, 940-949.	4.9	16
43	A non-fullerene electron acceptor with a spirobifluorene core and four diketopyrrolopyrrole arms end capped by 4-fluorobenzene. Dyes and Pigments, 2017, 143, 217-222.	3.7	14
44	Highâ€Performance Upscaled Indium Tin Oxide–Free Organic Solar Cells with Visual Esthetics and Flexibility. Solar Rrl, 2021, 5, 2100339.	5.8	12
45	Nonâ€Halogenated Solvents Processed Efficient ITOâ€Free Flexible Organic Solar Cells with Upscaled Area. Macromolecular Rapid Communications, 2022, 43, e2200049.	3.9	9
46	Tandem Organic Solar Cells: Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9870-9870.	21.0	2
47	Conformation tuning of simple non-fused electron acceptors via oxygen and sulfur substitutions and its effects on photovoltaics. Multifunctional Materials, 2021, 4, 024003.	3.7	2
48	Selection of side groups on simple <scp>nonâ€fullerene</scp> acceptors for the application in organic solar cells: From flexible to rigid. Journal of Polymer Science, 2022, 60, 2343-2351.	3.8	1
49	Chemical modification of AlQ3 to a potential electron acceptor for solution-processed organic solar cells. Tetrahedron Letters, 2016, 57, 2797-2799.	1.4	0