
Maria G Semenova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8463863/publications.pdf

Version: 2024-02-01

MADIA C. SEMENOVA

#	Article	IF	CITATIONS
1	Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid and Interface Science, 2017, 28, 15-21.	3.4	92
2	Effect of high-methoxy pectin on properties of casein-stabilized emulsions. Food Hydrocolloids, 1998, 12, 425-432.	5.6	91
3	Emulsifying properties of covalent protein—dextran hybrids. Colloids and Surfaces, 1992, 64, 299-310.	0.9	81
4	Salt stability of casein emulsions. Food Hydrocolloids, 1998, 12, 227-235.	5.6	80
5	Analysis of Light Scattering Data on the Calcium Ion Sensitivity of Caseinate Solution Thermodynamics: Relationship to Emulsion Flocculation. Journal of Colloid and Interface Science, 2001, 239, 87-97.	5.0	66
6	Food protein interactions in sugar solutions. Current Opinion in Colloid and Interface Science, 2002, 7, 438-444.	3.4	64
7	Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: relationship to protein gelation. Colloids and Surfaces B: Biointerfaces, 2003, 31, 31-46.	2.5	58
8	Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloids, 2007, 21, 23-45.	5.6	50
9	The effect of sucrose on the thermodynamic properties of ovalbumin and sodium caseinate in bulk solution and at air–water interface. Colloids and Surfaces B: Biointerfaces, 1999, 12, 261-270.	2.5	47
10	On relationships between molecular structure, interaction and surface behavior in mixture: small-molecule surfactant+protein. Colloids and Surfaces B: Biointerfaces, 2001, 21, 217-230.	2.5	44
11	Light scattering study of sodium caseinate+dextran sulfate in aqueous solution: Relationship to emulsion stability. Food Hydrocolloids, 2009, 23, 629-639.	5.6	39
12	Emulsifying behaviour of protein in the presence of polysaccharide under conditions of thermodynamic incompatibility. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 849.	1.7	37
13	The influence of dextran on the interfacial pressure of adsorbing layers of 11S globulin vicia faba at the planar n-decane/aqueous solution interface. Food Hydrocolloids, 1993, 7, 1-10.	5.6	32
14	Binding of aroma compounds with legumin. I. Binding of hexyl acetate with 11S globulin depending on the protein molecular state in aqueous medium. Food Hydrocolloids, 2002, 16, 557-564.	5.6	32
15	Effect of small molecule surfactants on molecular parameters and thermodynamic properties of legumin in a bulk and at the air–water interface depending on a protein structure in an aqueous medium. Colloids and Surfaces B: Biointerfaces, 1999, 12, 271-285.	2.5	24
16	Impact of the structure of polyunsaturated soy phospholipids on the structural parameters and functionality of their complexes with covalent conjugates combining sodium caseinate with maltodextrins. Food Hydrocolloids, 2016, 52, 144-160.	5.6	23
17	Calorimetric study of the interactions between small-molecule surfactants and sodium caseinate with reference to the foaming ability of their binary mixtures. Food Hydrocolloids, 2005, 19, 441-453.	5.6	22
18	Essential contributions of food hydrocolloids and phospholipid liposomes to the formation of carriers for controlled delivery of biologically active substances via the gastrointestinal tract. Food Hydrocolloids, 2021, 120, 106890.	5.6	22

MARIA G SEMENOVA

#	Article	IF	CITATIONS
19	The influence of incompatibility on the formation of adsorbing layers and dispersion of n-decane emulsion droplets in aqueous solution containing a mixture of 11S globulin from Vicia faba and dextran. Food Hydrocolloids, 1992, 6, 237-251.	5.6	21
20	Thermodynamic Analysis of the Impact of the Surfactantâ ^{~,} Protein Interactions on the Molecular Parameters and Surface Behavior of Food Proteins. Biomacromolecules, 2006, 7, 101-113.	2.6	21
21	Advances in molecular design of biopolymer-based delivery micro/nanovehicles for essential fatty acids. Food Hydrocolloids, 2017, 68, 114-121.	5.6	21
22	Biopolymer nanovehicles for essential polyunsaturated fatty acids: Structure–functionality relationships. Food Research International, 2016, 88, 70-78.	2.9	20
23	Light scattering and thermodynamic phase behavior of the system 11S globulin-κ-carrageenan-water. Food Hydrocolloids, 1991, 4, 469-479.	5.6	19
24	Thermodynamic and structural insight into the underlying mechanisms of the phosphatidylcholine liposomes – casein associates co-assembly and functionality. Food and Function, 2012, 3, 271.	2.1	18
25	Structural and thermodynamic properties underlying the novel functionality of sodium caseinate as delivery nanovehicle for biologically active lipids. Food Hydrocolloids, 2014, 42, 149-161.	5.6	16
26	Effect of maltodextrins on the surface activity of small-molecule surfactants. Colloids and Surfaces B: Biointerfaces, 2003, 31, 47-54.	2.5	15
27	Influence of maltodextrins with different dextrose equivalent on the thermodynamic properties of legumin in a bulk and at the air–water interface. Colloids and Surfaces B: Biointerfaces, 1999, 12, 287-297.	2.5	14
28	Binding of aroma compounds with legumin. II. Effect of hexyl acetate on thermodynamic properties of 11S globulin in aqueous medium. Food Hydrocolloids, 2002, 16, 565-571.	5.6	13
29	Binding of aroma compounds with legumin. III. Thermodynamics of competitive binding of aroma compounds with 11S globulin depending on the structure of aroma compounds. Food Hydrocolloids, 2002, 16, 573-584.	5.6	13
30	Thermodynamic and functional properties of legumin (11S globulin from Vicia faba) in the presence of small-molecule surfactants: effect of temperature and pH. Journal of Colloid and Interface Science, 2004, 278, 71-80.	5.0	12
31	Proteins as functional components in colloidal foods. Current Opinion in Colloid and Interface Science, 1998, 3, 627-632.	3.4	10
32	Sticking of protein-coated particles in a shear field. Colloids and Surfaces B: Biointerfaces, 2001, 22, 237-244.	2.5	10
33	Surface activity at the planar interface in relation to the thermodynamics of intermolecular interactions in the ternary system: maltodextrin–small-molecule surfactant-legumin. Colloids and Surfaces B: Biointerfaces, 2001, 21, 179-189.	2.5	8
34	Impact of the character of the associative interactions between chitosan and whey protein isolate on the structure, thermodynamic parameters, and functionality of their complexes with essential lipids. Food Hydrocolloids, 2020, 105, 105803.	5.6	8
35	Calorimetric investigation of the thermodynamic basis of the effect of maltodextrins on the foaming ability of legumin in the presence of small-molecule surfactant. Food Hydrocolloids, 2005, 19, 455-466.	5.6	7
36	On the effect of calcium ions on the sticking behaviour of casein-coated particles in shear flow. Colloids and Surfaces B: Biointerfaces, 2003, 27, 123-131.	2.5	6

#	Article	IF	CITATIONS
37	Efficiency of an oral delivery system based on a liposomal form of a combination of curcumin with a balanced amount of n-3 and n-6 PUFAs encapsulated in an electrostatic complex of WPI with chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129630.	2.3	5
38	The relationship between the structure and functionality of essential PUFA delivery systems based on sodium caseinate with phosphatidylcholine liposomes without and with a plant antioxidant: an <i>in vitro</i> and <i>in vivo</i> study. Food and Function, 2022, 13, 2354-2371.	2.1	2
39	Sequential transformation of the structural and thermodynamic parameters of the complex particles, combining covalent conjugate (sodium caseinate + maltodextrin) with polyunsaturated lipids stabilized by a plant antioxidant, in the simulated gastro-intestinal conditions in vitro. Food Research International, 2016, 88, 173-177.	2.9	1
40	Complexes of Biopolymers with Essential Lipids: Relationships between the Structure and Functional Properties. Russian Journal of Physical Chemistry B, 2019, 13, 932-937.	0.2	1
41	Innovative food ingredients based on the milk protein–chitosan complex particles for the fortification of food with essential lipids. International Dairy Journal, 2022, 132, 105402.	1.5	1
42	The modification of the molecular and thermodynamic parameters of the low-DE potato maltodextrin in an aqueous medium through the interactions with anionic small-molecule surfactants. Food Hydrocolloids, 2007, 21, 693-703.	5.6	0
43	Structural and thermodynamic insight into the potentiality of food biopolymers to behave as smart nanovehicles for essential polyunsaturated lipids. , 2016, , 193-228.		0

44 Equilibrium in Colloidal Systems. , 2019, , 507-528.

0